Elucidating the Trophic Support of Long Axons by Metabolic Signaling in Oligodendrocytes
通过少突胶质细胞代谢信号阐明长轴突的营养支持
基本信息
- 批准号:10782630
- 负责人:
- 金额:$ 37.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-09 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinaseAdultAlzheimer&aposs DiseaseAttenuatedAxonBiologicalCentral Nervous SystemCessation of lifeDataDefectDeteriorationDiameterDiseaseElectrophysiology (science)Energy MetabolismEtiologyFailureFiberGLC2 proteinGeneticGleanGlucoseHealth PromotionHomeostasisImpairmentIndividualIntoxicationLife ExpectancyMetabolicMetabolic PathwayMetabolismMicrofluidic MicrochipsMitochondriaModelingMolecularMultiple SclerosisMutant Strains MiceNerve DegenerationNeurodegenerative DisordersNeurogliaNeurologicOligodendrogliaOptic NerveOutputPathway interactionsPhenotypePhosphorylationPhosphotransferasesPlayRegulationRoleSTK11 geneSchwann CellsSecondary toSignal PathwaySignal TransductionStructureTherapeuticWorkaxon injuryaxonal degenerationdeprivationdisabilityimaging modalityin vivointerdisciplinary approachlipid metabolismliver ablationmetabolomemitochondrial metabolismmouse modelmutantmyelinationneural circuitnew therapeutic targetnovelpreservationsensortherapeutic targettoolupstream kinasewhite matter
项目摘要
The fundamenal neuroscientific question as to how myelinating glia promote the health of long
axons is greatly understudied. Axons are a particularly vulnerable component of neural circuits
that are irreversibly damaged in early stages of many debilitating neurodegenerative conditions
such as Multiple sclerosis and Alzheimers’ disease. The mechanisms underlying glial
contributions to axonal injury are only pooly understood. Oligodendrocytes (OLGs), the
myelinating glia of the central nervous system, stabilize axonal integrity by poorly understood
trophic mechanisms. Current models suggest that glial metabolism is critical for this support
function, and disrupted metabolic exchange between OLGs and axons, or metabolic deficits in
OLGs may lead to axonal degeneration. In support, we made the exciting discovery that the LKB1
(liver kinase B1) signaling pathway is a crucial metabolic regulator in OLGs, and the inactivation
of LKB1 in these glia results in aberrant mitochondrial energy metabolism and progressive
degeneration of axons. Remarkably, such non-cell-autonomous axon degeneration is not
preceded by changes of OLG structure and myelination, indicating that it occurs secondary to
glial metabolic perturbation. These discoveries lead us to hypothesize that LKB1 and its
downstream metabolic effectors, most notably those regulating mitochondrial metabolism in
OLGs, are integral to the trophic support mechanisms for axons. Using manipulation of LKB1
signaling as an experimental tool to change glial metabolism with no impact on other biological
outputs of OLGs, here we implement a multidisciplinary approach that will afford us the unique
opportunity to pinpoint metabolic alterations in OLGs that disrupt the support of axons. In this
context we will also investigate whether axons degenerate as a consequence of energetic
deprivation, or metabolic poisoining. Together, this will provide valuable data to elucidate which
downstream components of the LKB1-dependent metabolic signaling network in OLGs are
fundamentally important for axon integrity. The proposed efforts may open the door to the
identification of unexpected metabolic components in OLGs that are essential for axon support.
Manipulation of these components will have the potential to promote axon integrity in
neurodegenerative diseases. Because glial and metabolic abnormalities associated with axon
degeneration can be observed in many neurodegenerative conditions, this approach has the
potential for wide-ranging therapeutic impact.
髓鞘胶质细胞如何促进Long的健康的基础神经科学问题
轴突的研究严重不足。轴突是神经回路中特别脆弱的组成部分
在许多衰弱的神经退行性疾病的早期阶段,它们受到不可逆转的损害
例如多发性硬化症和阿尔茨海默氏症。神经胶质细胞的潜在机制
对轴突损伤的作用仅是一般的理解。少突胶质细胞(OLG)
中枢神经系统的髓鞘胶质细胞,稳定轴突的完整性,知之甚少
营养机制。目前的模型表明,神经胶质代谢对这种支持至关重要。
功能,并扰乱OLG和轴突之间的代谢交换,或
OLG可导致轴突变性。作为支持,我们发现了令人兴奋的LKB1
(肝脏激酶B1)信号通路是OLG中重要的代谢调节因子,其失活
在这些胶质细胞中LKB1的表达导致线粒体能量代谢的异常和进行性
轴突变性。值得注意的是,这种非细胞自主的轴突变性并不
之前有OLG结构和髓鞘的变化,表明它发生在继发于
神经胶质代谢紊乱。这些发现使我们假设LKB1及其
下游代谢效应物,最著名的是调节线粒体代谢的那些
OLG是轴突营养支持机制不可或缺的一部分。使用LKB1的操作
信号作为一种实验工具改变神经胶质代谢而不影响其他生物
在这里,我们实施了一种多学科的方法,将为我们提供独特的
有机会准确定位破坏轴突支持的OLG的代谢变化。在这
背景我们还将调查轴突退化是否是能量过高的结果
剥夺,或代谢紊乱。总而言之,这将提供有价值的数据来阐明
OLG中依赖LKB1的代谢信号网络的下游组件为
对轴突的完整性至关重要。拟议的努力可能会打开通往
确定OLG中对轴突支持至关重要的意想不到的代谢成分。
这些组件的操作将有可能促进轴突的完整性
神经退行性疾病。因为与轴突相关的神经胶质和代谢异常
在许多神经退行性疾病中都可以观察到退变,这种方法具有
有可能产生广泛的治疗影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bogdan Beirowski其他文献
Bogdan Beirowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bogdan Beirowski', 18)}}的其他基金
An innovative instrument cluster for the integrative behavioral analysis of mouse mutants with perturbed neuronal connectivity
用于对神经元连接受到干扰的小鼠突变体进行综合行为分析的创新仪器组
- 批准号:
10176986 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别:
Elucidating the trophic support of long axons by metabolic signaling in oligodendrocytes
通过少突胶质细胞代谢信号阐明长轴突的营养支持
- 批准号:
10318595 - 财政年份:2020
- 资助金额:
$ 37.49万 - 项目类别:
Elucidating the trophic support of long axons by metabolic signaling in oligodendrocytes
通过少突胶质细胞代谢信号阐明长轴突的营养支持
- 批准号:
9887384 - 财政年份:2020
- 资助金额:
$ 37.49万 - 项目类别:
相似海外基金
Pharmacological targeting of AMP-activated protein kinase for immune cell regulation in Type 1 Diabetes
AMP 激活蛋白激酶对 1 型糖尿病免疫细胞调节的药理学靶向
- 批准号:
2867610 - 财政年份:2023
- 资助金额:
$ 37.49万 - 项目类别:
Studentship
Establishing AMP-activated protein kinase as a regulator of adipose stem cell plasticity and function in health and disease
建立 AMP 激活蛋白激酶作为脂肪干细胞可塑性和健康和疾病功能的调节剂
- 批准号:
BB/W009633/1 - 财政年份:2022
- 资助金额:
$ 37.49万 - 项目类别:
Fellowship
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别:
Postdoctoral Fellowships
Metabolic control of integrin membrane traffic by AMP-activated protein kinase controls cell migration.
AMP 激活的蛋白激酶对整合素膜运输的代谢控制控制着细胞迁移。
- 批准号:
459043 - 财政年份:2021
- 资助金额:
$ 37.49万 - 项目类别:
Studentship Programs
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2020
- 资助金额:
$ 37.49万 - 项目类别:
Postdoctoral Fellowships
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
- 批准号:
10561642 - 财政年份:2019
- 资助金额:
$ 37.49万 - 项目类别:
Determining the role of AMP-activated protein kinase in the integration of skeletal muscle metabolism and circadian biology
确定 AMP 激活蛋白激酶在骨骼肌代谢和昼夜节律生物学整合中的作用
- 批准号:
532989-2019 - 财政年份:2019
- 资助金额:
$ 37.49万 - 项目类别:
Postdoctoral Fellowships
Treating Diabetic Inflammation using AMP-Activated Protein Kinase Activators
使用 AMP 激活的蛋白激酶激活剂治疗糖尿病炎症
- 批准号:
2243045 - 财政年份:2019
- 资助金额:
$ 37.49万 - 项目类别:
Studentship
The Role of AMP-activated Protein Kinase in GVHD-causing T Cells
AMP 激活的蛋白激酶在引起 GVHD 的 T 细胞中的作用
- 批准号:
10359032 - 财政年份:2019
- 资助金额:
$ 37.49万 - 项目类别:
Investigating the therapeutic potential of AMP-activated protein kinase in myotonic dystrophy type 1
研究 AMP 激活蛋白激酶在 1 型强直性肌营养不良中的治疗潜力
- 批准号:
428988 - 财政年份:2019
- 资助金额:
$ 37.49万 - 项目类别:
Studentship Programs