Rhes-SUMO Pathway in Huntington disease
亨廷顿病中的 Rhes-SUMO 通路
基本信息
- 批准号:10785540
- 负责人:
- 金额:$ 6.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2023-11-07
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAgingAnimal DiseasesAnimal ModelAnimalsAreaAutophagocytosisAwardBehaviorBindingBrainCell CommunicationCell modelCellsCorpus striatum structureCultured CellsDRD2 geneDataDiseaseDisease ProgressionDisease modelDistantEtiologyFundingGenetic DiseasesGlutamineHomologous GeneHumanHuntington DiseaseHuntington geneIn VitroKnowledgeLinkMass Spectrum AnalysisMediatingMembraneMissionModificationMolecularMusNanotubesNeurogliaNeuronsPainParentsPathogenesisPathway interactionsPeripheralPhenotypePost-Translational Protein ProcessingProcessProteinsPublic HealthReporterResearchRoleRouteSUMO1 geneSignal TransductionSliceSpecificitySumoylation PathwayTestingTissuesToxic effectTransgenic AnimalsTransportationUbiquitinUnited States National Institutes of HealthViral VectorWorkcell typedisabilitydrug discoveryexpression vectorfarnesylationin vivoinhibition of autophagyinhibitorinsightlive cell imagingmutantnervous system disorderneuropathologynovelnovel therapeutic interventionpharmacologicpreventtransmission process
项目摘要
Project summary of the funded parent award
Huntington disease (HD) is a slowly progressing genetic disorder caused by an expansion of glutamine repeats
in the huntingtin protein (wtHTT), leading to mutant HTT (mHTT) that is widely expressed throughout the brain
and peripheral tissues. Despite this ubiquitous expression, mHTT shows regional effects by promoting
degeneration of medium spiny neurons (MSNs) in the striatum and loss of cortical mass. With aging, the effects
spread to other brain areas (1-5). The molecular basis for the regional specificity that encompasses many mHTT
processes is unclear; thus, etiology-based therapies for this devastating disease remain elusive. To fill this
knowledge gap, we will test the hypothesis that Ras-homolog enriched in the striatum (Rhes) and small
ubiquitin-like modifier (SUMO)-1 signaling circuitry orchestrate striatal vulnerability and HD progression.
This hypothesis is based on our prior finding that Rhes promotes SUMO-1 modification of mHTT (SUMO1–
mHTT) and enhances soluble forms SUMO1–mHTT, leading to toxicity in cell and transgenic animal models of
HD (6-14). However, the downstream mechanisms of the Rhes–SUMO1–mHTT pathway in HD remain obscure.
Serendipitously, we found that Rhes promotes the formation of actin-containing membrane protrusions
known as tunneling nanotubes (TNTs) and that Rhes is transported through TNTs to distant cells (15). Rhes also
transports mHTT, but not wtHTT, via the TNTs that form between cultured cells. This intercellular transport
requires post-translational modifications (PTMs), such as the farnesylation of Rhes and SUMOylation of mHTT,
revealing a new role for the Rhes–SUMO1 pathway in mHTT transmission (15). We now demonstrate that Rhes
can move between MSNs and spread mHTT in vivo. We tested using cell-type specific reporter mice, Flex (“Cre-
On”) and bicistronic viral vectors, and organotypic brain slices and found that Rhes moves from D1R-MSNs to
D2R-MSNs and potentiates mHTT spread from the striatum to the cortex in the brain (16). These results indicate
that Rhes is a major driver of mHTT transport, both in vitro and in vivo. We also found that SUMO1 deletion
diminishes mHTT protein levels and prevents the HD-like phenotype by upregulating autophagic activity in
animal (Q175DN) and cellular HD models (17). Taken together, these new results indicate that the Rhes-
SUMO1 pathway alters mHTT levels and promotes mHTT spread in the brain. However, the mechanisms
of mHTT spread remain unknown. Therefore, uncovering the mechanisms that enable Rhes to spread mHTT
and the in vivo neuropathological role of spread remain essential areas to address. Our preliminary data suggest
that SUMO1 regulates striatal mTORC1 signaling, a major regulator of autophagy, in Q175DN mice. Defining
whether or how SUMO1 contributes to mHTT spread in vivo and its role autophagy dysregulation is therefore
critical both for modeling the disease progression and for drug discovery. Our specific aims in this project are:
Aim 1. To uncover the role and mechanisms of Rhes-mediated mHTT spreading in the brain. We
found that Rhes moves and spreads mHTT between neurons in vivo. We hypothesize that Rhes spreads mHTT
and promotes neuropathology involving PTM mechanisms and TNT-like routes. We will employ bicistronic and
Cre-On PTM defective mHTT and Rhes expression vectors to investigate mHTT spreading, HD-like behavior,
and neuropathology in vivo. We will use MSNs and glial reporter mice to determine if Rhes can transport mHTT
from MSNs to the cortex and from MSNs to the glia in the brain. We will use live-cell imaging and organotypic
brain slices to establish whether Rhes transportation of mHTT involves TNT-like protrusions ex vivo. These
results will uncover novel mechanisms and the role of Rhes-mediated mHTT spread in the brain.
Aim 2. To identify the mechanisms of SUMO1-mediated HD pathogenesis. We found that SUMO1
depletion upregulates autophagy, decreases mHTT levels, and prevents HD-like deficits in Q175DN mice. We
showed that SUMO1 and mHTT enhance striatal mTORC1 signaling, a known inhibitor of autophagy. Thus, we
hypothesize that SUMO1–mHTT inhibits autophagy, thereby allowing accumulation and spread of mHTT from
the striatum to the cortex. We will first characterize the SUMO1 role in autophagy flux in cultured cells and HD
animals using autophagy reporters. We will then use Cre-On mHTT reporters and WT;Rgs9Cre and SUMO1-
KO;Rgs9Cre mice and pharmacological mTORC1 inhibition to corroborate a role for SUMO1 and autophagy
signaling in mHTT spread from MSNs to the cortex. Finally, using a mass spectrometry approach, we will identify
SUMO1-dependent mHTT binding partners to further unravel SUMO/autophagy regulators in the striatum.
Collectively, this study will delineate the mechanisms of the Rhes–SUMO1 pathway in mHTT spread. It
will identify the molecular link between autophagy dysregulation and mHTT spread for potential targeting in HD
therapy.
资助家长奖项目摘要
亨廷顿病(HD)是一种由谷氨酰胺重复序列扩增引起的缓慢进展的遗传性疾病
亨廷顿蛋白(wtHTT),导致突变HTT(mHTT),广泛表达于整个大脑
和外周组织。尽管这种普遍存在的表达,mHTT显示区域效应,促进
纹状体中的中型多刺神经元(MSN)变性和皮质质量损失。随着年龄的增长,
扩散到其他脑区(1-5)。包括许多mHTT的区域特异性的分子基础
过程尚不清楚;因此,这种毁灭性疾病的基于病因的疗法仍然难以捉摸。填补这一
知识的差距,我们将测试的假设,Ras同源物丰富的纹状体(Rhes)和小
泛素样修饰物(SUMO)-1信号通路协调纹状体脆弱性和HD进展。
这一假设基于我们先前的发现,Rhes促进mHTT的SUMO-1修饰(SUMO 1 - 1修饰)。
mHTT)并增强可溶性形式SUMO 1-mHTT,导致在细胞和转基因动物模型中的毒性。
HD(6-14)。然而,在HD中Rhes-SUMO 1-mHTT通路的下游机制仍然不清楚。
偶然地,我们发现Rhes促进含肌动蛋白的膜突起的形成
已知为隧道纳米管(TNT),并且Rhes通过TNT运输到远处的细胞(15)。Rhes也
通过培养细胞之间形成的TNT转运mHTT,但不转运wtHTT。这种细胞间运输
需要翻译后修饰(PTM),例如Rhes的法尼基化和mHTT的SUMO化,
揭示了Rhes-SUMO 1通路在mHTT传递中的新作用(15)。我们现在证明Rhes
可以在MSN之间移动并在体内传播mHTT。我们使用细胞类型特异性报告小鼠Flex(“Cre-1”)进行了测试。
和双顺反子病毒载体,以及器官型脑切片,发现Rhes从D1 R-MSN移动到
D2 R-MSN和增强mHTT从纹状体扩散到大脑皮层(16)。这些结果表明
Rhes是体外和体内mHTT转运的主要驱动因素。我们还发现SUMO 1缺失
降低mHTT蛋白水平,并通过上调自噬活性来预防HD样表型。
动物(Q175 DN)和细胞HD模型(17)。总之,这些新的结果表明,Rhes-
SUMO 1通路改变mHTT水平并促进mHTT在大脑中的扩散。然而,机制
mHTT的传播仍然未知。因此,揭示Rhes传播mHTT的机制
以及扩散的体内神经病理学作用仍然是需要解决的重要领域。我们的初步数据显示
SUMO 1调节Q175 DN小鼠纹状体mTORC 1信号传导,这是自噬的主要调节因子。限定
因此,SUMO 1是否或如何促进mHTT在体内的传播以及其自噬失调的作用是
对于疾病进展的建模和药物发现都至关重要。我们在这个项目中的具体目标是:
目标1.目的:探讨Rh介导的mHTT在脑内的作用及机制。我们
发现Rhes在体内神经元之间移动和传播mHTT。我们假设Rhes传播mHTT
并促进涉及PTM机制和TNT样途径的神经病理学。我们将采用双顺反子和
Cre-On PTM缺陷型mHTT和Rhes表达载体用于研究mHTT扩散、HD样行为,
和体内神经病理学。我们将使用MSNs和神经胶质报告小鼠来确定Rhes是否可以转运mHTT
从MSNs到大脑皮层,从MSNs到大脑中的神经胶质。我们将使用活细胞成像和器官型
脑切片以确定mHTT的Rhes转运是否涉及离体TNT样突起。这些
结果将揭示新的机制和作用的恒河猴介导的mHTT传播在大脑中。
目标二。明确SUMO 1介导的HD发病机制。我们发现相扑1
在Q175 DN小鼠中,消耗上调自噬,降低mHTT水平,并防止HD样缺陷。我们
研究表明,SUMO 1和mHTT增强纹状体mTORC 1信号传导,这是一种已知的自噬抑制剂。因此我们
假设SUMO 1-mHTT抑制自噬,从而允许mHTT从
纹状体到皮层我们将首先描述SUMO 1在培养细胞和HD中自噬通量中的作用。
动物使用自噬报告。然后,我们将使用Cre-On mHTT报告子和WT; Rgs 9 Cre和SUMO 1 - 1。
KO; Rgs 9 Cre小鼠和药理学mTORC 1抑制,以证实SUMO 1和自噬的作用
mHTT中的信号从MSN传播到皮层。最后,使用质谱法,我们将识别
SUMO 1依赖性mHTT结合伴侣进一步阐明纹状体中的SUMO/自噬调节因子。
总的来说,这项研究将描绘mHTT传播中的Rhes-SUMO 1通路的机制。它
将确定自噬失调和mHTT扩散之间的分子联系,以潜在靶向HD
疗法
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivasa Subramaniam其他文献
Srinivasa Subramaniam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivasa Subramaniam', 18)}}的其他基金
Validating cGAS-STING pathway as drug target in Huntington disease mouse model
在亨廷顿病小鼠模型中验证 cGAS-STING 通路作为药物靶点
- 批准号:
10508092 - 财政年份:2022
- 资助金额:
$ 6.92万 - 项目类别:
mTOR Signaling in Striatum: Regulation and Function
纹状体中的 mTOR 信号传导:调节和功能
- 批准号:
9174387 - 财政年份:2016
- 资助金额:
$ 6.92万 - 项目类别:
Rhes-SUMO circuitry in Huntington's Disease Pathogenesis
亨廷顿病发病机制中的 Rhes-SUMO 电路
- 批准号:
9006888 - 财政年份:2016
- 资助金额:
$ 6.92万 - 项目类别:
mTOR Signaling in Striatum: Regulation and Function
纹状体中的 mTOR 信号传导:调节和功能
- 批准号:
8883032 - 财政年份:2015
- 资助金额:
$ 6.92万 - 项目类别:
mTOR Signaling in Striatum: Regulation and Function
纹状体中的 mTOR 信号传导:调节和功能
- 批准号:
9282509 - 财政年份:2015
- 资助金额:
$ 6.92万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 6.92万 - 项目类别:
Research Grant














{{item.name}}会员




