Functional Active-Site Models of Cytochrome c Oxidase

细胞色素 c 氧化酶的功能活性位点模型

基本信息

  • 批准号:
    7617654
  • 负责人:
  • 金额:
    $ 30.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1977
  • 资助国家:
    美国
  • 起止时间:
    1977-12-01 至 2011-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Most of the energy in our bodies is generated within the mitochondria by a respiratory process called oxidative phosphorylation. This energy derives from the activation and reduction of dioxygen. This four-electron reduction process is catalyzed by the terminal respiratory enzyme, cytochrome c oxidase (CcO). Important medical disorders are related to oxygen/energy metabolism. Oxidative stress is important in the pathology of many diseases, such as those of the nervous system, Alzheimer's disease, stroke, cardiovascular disorders, and cell death. The reactive oxygen species, which cause inflammation and cell damage, are primarily formed during mitochondria! metabolism. Over 95 percent of the oxygen consumed by humans is used in respiration. In the mitochondria, reducing equivalents (electrons) derived enzymatically from food, react with dioxygen in a series of electron-transfer reactions to develop a proton gradient that ultimately produces ATP, the biological energy currency. Energy releasing electron/proton transfers to molecular oxygen are coupled to the transfer of other protons across the mitochondrial membrane. Subsequent relaxation of this proton gradient through ATPase provides energy storage in ATP. This 4-electron reduction of dioxygen occurs at remarkably fast rates; up to 250 dioxygen molecules (1000 electrons) can be transformed per second. This project is directed towards the invention and synthesis of compounds that imitate the active site in CcO. These compounds, which have a heme and a copper in close proximity, are intended to function like the enzyme by catalyzing the electrochemical reduction of molecular oxygen under physiological conditions without releasing reactive oxygen species such as superoxide and hydrogen peroxide. Through careful study of the mechanisms by which these synthetic, functional enzyme-mimics, reduce dioxygen, we intend to gain an understanding of the mechanisms that describe the function of the enzyme itself. The role that the copper ion (CuB) and a phenolic group, in the amino acid tyrosine (Tyr244) play in the catalytic function of CcO are of particular interest.
描述(由申请人提供):我们体内的大部分能量是通过称为氧化磷酸化的呼吸过程在线粒体内产生的。这种能量来源于分子氧的活化和还原。这个四电子还原过程由末端呼吸酶细胞色素c氧化酶(CcO)催化。重要的医学疾病与氧/能量代谢有关。氧化应激在许多疾病的病理学中是重要的,例如神经系统疾病、阿尔茨海默病、中风、心血管疾病和细胞死亡。引起炎症和细胞损伤的活性氧主要是在线粒体中形成的!新陈代谢.人类消耗的氧气中有95%以上用于呼吸。在线粒体中,从食物中酶促产生的还原当量(电子)在一系列电子转移反应中与分子氧反应,形成质子梯度,最终产生ATP,生物能量货币。释放能量的电子/质子转移到分子氧与其他质子跨线粒体膜的转移偶联。随后通过ATP酶的质子梯度的弛豫提供了ATP中的能量储存。分子氧的4电子还原速度非常快,每秒可以转化多达250个分子氧分子(1000个电子)。该项目旨在发明和合成模拟CcO活性位点的化合物。这些化合物具有紧密接近的血红素和铜,旨在通过在生理条件下催化分子氧的电化学还原而不释放活性氧物质如超氧化物和过氧化氢来发挥酶的功能。通过仔细研究这些合成的功能性酶模拟物减少分子氧的机制,我们打算了解描述酶本身功能的机制。铜离子(CuB)和酚基,在氨基酸酪氨酸(Tyr 244)中发挥的作用,在CcO的催化功能是特别感兴趣的。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES P COLLMAN其他文献

JAMES P COLLMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES P COLLMAN', 18)}}的其他基金

Biomimetic Studies of NO-binding Respiratory Chain Hemes
NO 结合呼吸链血红素的仿生研究
  • 批准号:
    7216901
  • 财政年份:
    2005
  • 资助金额:
    $ 30.3万
  • 项目类别:
BIOMIMETIC HEME CHEMISTRY
仿生血红素化学
  • 批准号:
    7180896
  • 财政年份:
    2005
  • 资助金额:
    $ 30.3万
  • 项目类别:
Biomimetic Studies of NO-binding Respiratory Chain Hemes
NO 结合呼吸链血红素的仿生研究
  • 批准号:
    7026431
  • 财政年份:
    2005
  • 资助金额:
    $ 30.3万
  • 项目类别:
Biomimetic Studies of NO-binding Respiratory Chain Hemes
NO 结合呼吸链血红素的仿生研究
  • 批准号:
    6866034
  • 财政年份:
    2005
  • 资助金额:
    $ 30.3万
  • 项目类别:
Biomimetic Studies of NO-binding Respiratory Chain Hemes
NO 结合呼吸链血红素的仿生研究
  • 批准号:
    7388223
  • 财政年份:
    2005
  • 资助金额:
    $ 30.3万
  • 项目类别:
BIOMIMETIC HEME CHEMISTRY
仿生血红素化学
  • 批准号:
    6976583
  • 财政年份:
    2004
  • 资助金额:
    $ 30.3万
  • 项目类别:
BIOMIMETIC HEME CHEMISTRY
仿生血红素化学
  • 批准号:
    6308818
  • 财政年份:
    2000
  • 资助金额:
    $ 30.3万
  • 项目类别:
BIOMIMETIC HEME CHEMISTRY
仿生血红素化学
  • 批准号:
    6120214
  • 财政年份:
    1999
  • 资助金额:
    $ 30.3万
  • 项目类别:
BIOMIMETIC HEME CHEMISTRY
仿生血红素化学
  • 批准号:
    6281148
  • 财政年份:
    1998
  • 资助金额:
    $ 30.3万
  • 项目类别:
BIOMIMETIC HEME CHEMISTRY
仿生血红素化学
  • 批准号:
    6251410
  • 财政年份:
    1997
  • 资助金额:
    $ 30.3万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 30.3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了