A Coaxial Plasma Accelerator for Proton Radiotherapy
用于质子放射治疗的同轴等离子体加速器
基本信息
- 批准号:7642886
- 负责人:
- 金额:$ 22.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-17 至 2011-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationCancer PatientCapitalCharacteristicsCodeCollimatorCommunitiesComputer softwareCyclotronsDependenceDepositionDevelopmentDevicesDiagnosticDimensionsDisadvantagedDoseElectric CapacitanceElectrodesElectromagneticsElectronsEngineeringFeasibility StudiesFigs - dietaryGoalsGrowthHealthHumanHydrogenInjection of therapeutic agentInvestigationIonsLaboratoriesLeadLinear Accelerator Radiotherapy SystemsMagnetismMeasurementMeasuresMechanicsModalityModelingModificationNeutronsNormal tissue morphologyNuclear Track DetectionOcular orbitOperative Surgical ProceduresOpticsOutputPatientsPhasePhysicsPlasmaPower SourcesPropertyProtonsRadiationRadiation OncologyRadiation therapyShapesSimulateSiteSolutionsSynchrotronsSystemTechnologyTestingTherapeuticUniversitiesVisionWidthbaseconditioningcostdata spacedensitydesigneffective therapyelectric fieldhigh riskimprovedmagnetic fieldneutron radiationnext generationparticleproton beampublic health relevancetooltool developmenttumorvoltage
项目摘要
DESCRIPTION (provided by applicant): Proton radiotherapy is growing in the US and around the world. This growth is due to the commercial availability of protons and the physical advantages of the improved ability to deposit most of the radiation dose in the tumor, as opposed to x-rays where most of the dose is deposited in normal tissues. In the US there are currently five proton therapy centers treating patients and over 2300 x-ray based linear accelerator facilities. Limiting the widespread application of proton radiotherapy to the general cancer patient community is the capital, building and operating costs associated with proton radiotherapy that exceed $100 million per site, a substantial cost differential with x-ray based facilities. A compelling approach is to combine the physical advantages of proton therapy into a smaller, cheaper, gantry-mounted or fixed line system that can be widely disseminated for improved radiotherapy. The development and investigation of such an approach using coaxial plasma proton acceleration, is described in this proposal. Recent breakthroughs in the understanding and stabilization of a special high-velocity mode of operation in plasma accelerators by the Plasma Physics Laboratory at Stanford University have lead to an accelerator concept with the potential to make affordable, compact proton therapy possible. The aims for this feasibility study are to develop the existing accelerator to: 1. Testing and beam characterization: This task includes the use of various optical diagnostics and the measurements of phase space properties using a magnetic sector energy spectrometer. Nuclear track detection is used as a contingency to characterize the beam over a wide range of operating conditions. 2. Increase plasma accelerator beam energy: This task consists of optimization and scaling of various parameters, such as electrode shapes and dimensions, electric circuit parameters, mass flow, and power supply voltage. This task also includes the development of a new hydrogen injection system. 3. Modeling of beam dynamics: The feasibility of using a compact magnet/collimator assembly for energy dispersion and selection is assessed using the Geant4 software. The goal is to study approaches for beam transport and collimation while minimizing and capturing harmful secondary radiation and neutrons. The long term goal of this project is to develop the next generation of proton therapy treatment units that will improve human health through the wide dissemination of a compact, single room, proton therapy treatment system.
PUBLIC HEALTH RELEVANCE: This proposal describes a high-impact, high risk development combining exciting cutting edge developments in accelerator technology in mechanical engineering at Stanford University with an important unmet need in radiation oncology- a relatively compact, inexpensive accelerator for proton therapy. The long term goal of this project is to develop the next generation of proton therapy treatment units that will improve human health of cancer patients by the wide dissemination of a small, single room, proton therapy treatment system that will allow increased access to this improved treatment modality.
描述(由申请人提供):质子放射治疗在美国和世界各地正在发展。这种增长是由于质子的商业可用性以及将大部分辐射剂量沉积在肿瘤中的能力提高的物理优势,这与将大部分剂量沉积在正常组织中的 X 射线相反。美国目前有 5 个质子治疗中心治疗患者,以及 2300 多个基于 X 射线的直线加速器设施。限制质子放射治疗在一般癌症患者群体中广泛应用的是与质子放射治疗相关的资本、建筑和运营成本,每个站点超过 1 亿美元,这与基于 X 射线的设施相比存在巨大的成本差异。一种引人注目的方法是将质子治疗的物理优势结合到更小、更便宜的龙门安装或固定线路系统中,该系统可以广泛传播以改善放射治疗。该提案描述了使用同轴等离子体质子加速的这种方法的开发和研究。斯坦福大学等离子体物理实验室最近在理解和稳定等离子体加速器的特殊高速操作模式方面取得了突破,催生了一种加速器概念,有可能使经济实惠的紧凑型质子治疗成为可能。该可行性研究的目的是开发现有加速器以: 1. 测试和光束表征:该任务包括使用各种光学诊断以及使用扇形磁能谱仪测量相空间特性。核径迹检测被用作应急措施,以表征各种操作条件下的光束。 2. 增加等离子体加速器束能量:该任务包括各种参数的优化和缩放,例如电极形状和尺寸、电路参数、质量流量和电源电压。该任务还包括开发新的氢气喷射系统。 3. 光束动力学建模:使用 Geant4 软件评估使用紧凑型磁铁/准直器组件进行能量分散和选择的可行性。目标是研究光束传输和准直的方法,同时最大限度地减少和捕获有害的二次辐射和中子。该项目的长期目标是开发下一代质子治疗装置,通过广泛传播紧凑的单室质子治疗系统来改善人类健康。
公共健康相关性:该提案描述了一项高影响、高风险的开发,将斯坦福大学机械工程加速器技术的令人兴奋的前沿发展与放射肿瘤学中未满足的重要需求相结合——一种相对紧凑、廉价的质子治疗加速器。该项目的长期目标是开发下一代质子疗法治疗装置,通过广泛传播小型单室质子疗法治疗系统来改善癌症患者的健康,该系统将允许更多人获得这种改进的治疗方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Cappelli其他文献
Mark Cappelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Research Project 2 Proteogenomic-guided therapeutic targeting of breast cancer patient-derived xenograft metastases
研究项目 2 蛋白质基因组引导的乳腺癌患者异种移植转移的治疗靶向
- 批准号:
10733315 - 财政年份:2023
- 资助金额:
$ 22.06万 - 项目类别:
SQLE and Sterols Contribute to Racial Disparity in ER+ Breast Cancer Patient Survival
SQLE 和甾醇导致 ER 乳腺癌患者生存率的种族差异
- 批准号:
10571020 - 财政年份:2023
- 资助金额:
$ 22.06万 - 项目类别:
Establishing industrial production of components that enable expanding accessibility of PET imaging to cancer patient population.
建立组件的工业化生产,使癌症患者群体能够更容易地获得 PET 成像。
- 批准号:
10698218 - 财政年份:2023
- 资助金额:
$ 22.06万 - 项目类别:
Washington University PDX Development and Trial Center - Evaluation of Abemaciclib in Combination with Olaparib in Ovarian Cancer and Breast Cancer Patient-derived Xenograft Models
华盛顿大学 PDX 开发和试验中心 - Abemaciclib 联合 Olaparib 在卵巢癌和乳腺癌患者异种移植模型中的评估
- 批准号:
10582164 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
Towards Cancer Patient Empowerment for Optimal Use of Antithrombotic Therapy at the End of Life
增强癌症患者在临终时最佳使用抗血栓治疗的能力
- 批准号:
10039823 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
EU-Funded
Convening a gynecologic cancer patient advisory group to adapt a digital health tool
召集妇科癌症患者咨询小组以采用数字健康工具
- 批准号:
460767 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
Miscellaneous Programs
Towards Cancer Patient Empowerment for Optimal Use of Antithrombotic Therapy at the End of Life
增强癌症患者在临终时最佳使用抗血栓治疗的能力
- 批准号:
10038000 - 财政年份:2022
- 资助金额:
$ 22.06万 - 项目类别:
EU-Funded
Longitudinal mixed method investigation of social networks and affective states as determinants of smoking behavior among cancer patient
社会网络和情感状态作为癌症患者吸烟行为决定因素的纵向混合方法调查
- 批准号:
10513670 - 财政年份:2021
- 资助金额:
$ 22.06万 - 项目类别:
Improving the translational value of head and neck cancer patient-in-mouse models
提高头颈癌小鼠模型的转化价值
- 批准号:
10598311 - 财政年份:2021
- 资助金额:
$ 22.06万 - 项目类别:
Improving the translational value of head and neck cancer patient-in-mouse models
提高头颈癌小鼠模型的转化价值
- 批准号:
10442585 - 财政年份:2021
- 资助金额:
$ 22.06万 - 项目类别: