Regulation of Soluble Guanylyl Cyclase, the NO-Receptor

可溶性鸟苷酸环化酶(NO 受体)的调节

基本信息

  • 批准号:
    7596175
  • 负责人:
  • 金额:
    $ 33.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-04-15 至 2012-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Since the discovery that the endothelium derived relaxing factor (EDRF) was the endogenous gas nitric oxide (NO), an astonishing number of physiological functions have been attributed to NO. Despite the widely recognized importance of NO, little is known about the mechanism of regulation of the NO receptor, the soluble guanylyl cyclase (sGC). sGC is a heme-containing heterodimer that catalyzes the formation of cGMP from the substrate GTP. Upon binding of NO to the heme, the sGC is activated several hundred fold. The sGC is a multi-domain signaling enzyme that contains the receptor-heme domain, a dimerization domain and the effector-catalytic domain. It is not known how the NO signal is propagated to the catalytic domain. The proposed studies seek to understand the structural and molecular basis of mechanisms of regulation of the sGC: 1) how the NO signal is transmitted from the receptor-heme domain to the catalytic-effector domain, 2) why sGC, following prolonged exposure to NO, becomes unresponsive to NO, 3) do endogenous modulators of sGC activity play a role in this inhibition. 1) Our initial structure-based mutational analysis of the sGC heme domain and dimerization domain (solved with our collaborator Dr. van den Akker) revealed specific regions in these domains that are crucial for NO signaling. We shall investigate how these mutants affect NO activation of sGC. Guided by our structural modeling and homology with ancient conserved domains, we also seek to probe the interactions between the sGC domains that are involved in sGC allosteric activation. 2) In our quest to understand the mechanism of desensitization of sGC, we discovered that sGC is S- nitrosylated in vitro and in vivo and that S-nitrosylation correlates with the loss of responsiveness to NO- stimulation, while the basal activity remains unaltered. S-nitrosylation is a post-translational modification in which a NO moiety is added to the free-thiol of specific cysteines. We will study the mechanism of desensitization of sGC by identifying and mutating the S-nitrosylated cysteines and analyze the resulting phenotypes. 3) Recent work from our laboratory and others suggests that there are endogenous modulators for the sGC. We have discovered that protein disulfide isomerase (PDI) inhibits NO-stimulated sGC activity. We will characterize the mechanism of inhibition and address its physiological relevance. Understanding the mechanisms of regulation of sGC and identifying regulatory molecules will be key to uncovering the molecular basis of and developing compensatory therapies for some types of hypertension, atherosclerosis and erectile dysfunction, which affect more than 60 million Americans.Nitric oxide (NO) induces in the blood vessels the production of a small molecule messenger cGMP which relaxes the vasculature. Dysfunction in the NO-cGMP pathway is responsible for many cardiovascular diseases including hypertension, erectile dysfunction and atherosclerosis which affect more than 60 million Americans. We seek to understand how the production of these molecules is controlled by the body.
描述(申请人提供):自从发现内皮衍生的松弛因子(EDRF)是内源性气体一氧化氮(NO)以来,大量的生理功能被归因于NO。尽管NO的重要性得到了广泛的认可,但人们对NO受体--可溶性鸟苷酸环化酶(SGC)的调节机制知之甚少。SGC是一种含血红素的杂二聚体,催化底物GTP形成cGMP。当NO与血红素结合时,sGC被激活数百倍。SGC是一个多结构域的信号酶,包含受体-血红素结构域、二聚结构域和效应-催化结构域。目前尚不清楚NO信号是如何传播到催化域的。这些研究试图了解sGC调控机制的结构和分子基础:1)NO信号是如何从受体-血红素域传递到催化效应域的;2)为什么sGC在长期暴露于NO后对NO没有反应;3)sGC活性的内源性调节器在这种抑制中起作用吗?1)我们最初对sGC血红素结构域和二聚化结构域的突变分析(与我们的合作者van den Akker博士一起解决)揭示了这些结构域中对NO信号至关重要的特定区域。我们将研究这些突变体如何影响sGC的NO激活。在我们的结构模型和与古老保守结构域的同源性指导下,我们还试图探索参与sGC变构激活的sGC结构域之间的相互作用。2)在探索SGC体内外脱敏机制的过程中,我们发现SGC体内外是S亚硝化的,S亚硝化与对NO刺激失去反应性有关,而基础活性保持不变。S亚硝化是一种翻译后修饰,在特定半胱氨酸的游离硫醇上添加了NO部分。我们将通过鉴定和突变S-亚硝基半胱氨酸来研究sGC的减敏机制,并分析产生的表型。3)本实验室和其他实验室最近的工作表明,sGC存在内源性调节剂。我们发现蛋白质二硫键异构酶(PDI)抑制NO刺激的sGC活性。我们将描述抑制的机制,并解决其生理相关性。 了解sGC的调节机制和识别调节分子将是揭示某些类型的高血压、动脉粥样硬化和勃起功能障碍的分子基础和开发代偿疗法的关键,这些疾病影响着6000多万美国人。一氧化氮(NO)在血管中诱导产生一种小分子信使cGMP,从而放松血管系统。NO-cGMP途径的功能障碍是许多心血管疾病的罪魁祸首,包括高血压、勃起功能障碍和动脉粥样硬化,这些疾病影响着6000多万美国人。我们试图了解这些分子的产生是如何被身体控制的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANNIE V BEUVE其他文献

ANNIE V BEUVE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANNIE V BEUVE', 18)}}的其他基金

NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
  • 批准号:
    10680605
  • 财政年份:
    2015
  • 资助金额:
    $ 33.52万
  • 项目类别:
NO signaling by a Soluble Guanylyl Cyclase-Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号转导
  • 批准号:
    8894270
  • 财政年份:
    2015
  • 资助金额:
    $ 33.52万
  • 项目类别:
NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
  • 批准号:
    10475129
  • 财政年份:
    2015
  • 资助金额:
    $ 33.52万
  • 项目类别:
NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
  • 批准号:
    10580267
  • 财政年份:
    2015
  • 资助金额:
    $ 33.52万
  • 项目类别:
NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
  • 批准号:
    10260574
  • 财政年份:
    2015
  • 资助金额:
    $ 33.52万
  • 项目类别:
NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
  • 批准号:
    10119473
  • 财政年份:
    2015
  • 资助金额:
    $ 33.52万
  • 项目类别:
S-nitrosylation of soluble guanylyl cyclase: potential role in nitrate tolerance
可溶性鸟苷酸环化酶的 S-亚硝基化:在硝酸盐耐受性中的潜在作用
  • 批准号:
    7620065
  • 财政年份:
    2008
  • 资助金额:
    $ 33.52万
  • 项目类别:
S-nitrosylation of soluble guanylyl cyclase: potential role in nitrate tolerance
可溶性鸟苷酸环化酶的 S-亚硝基化:在硝酸盐耐受性中的潜在作用
  • 批准号:
    7472094
  • 财政年份:
    2008
  • 资助金额:
    $ 33.52万
  • 项目类别:
Regulation of Soluble guanylyl cyclase, the NO-receptor
可溶性鸟苷酸环化酶(NO 受体)的调节
  • 批准号:
    7217328
  • 财政年份:
    2003
  • 资助金额:
    $ 33.52万
  • 项目类别:
Regulation of Soluble Guanylyl Cyclase, the NO-Receptor
可溶性鸟苷酸环化酶(NO 受体)的调节
  • 批准号:
    8636026
  • 财政年份:
    2003
  • 资助金额:
    $ 33.52万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.52万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 33.52万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.52万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.52万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.52万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 33.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 33.52万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 33.52万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 33.52万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 33.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了