AN ADAPTIVE BAYESIAN APPROACH TO JOINTLY MODELING RESPONSE AND TOXICITY IN PHAS
阶段性响应和毒性联合建模的自适应贝叶斯方法
基本信息
- 批准号:7601385
- 负责人:
- 金额:$ 0.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:AttentionBayesian MethodBiologicalComputer Retrieval of Information on Scientific Projects DatabaseComputer SimulationDataDecision TheoryDoseEventFundingGrantIndividualInstitutionMalignant NeoplasmsModelingNormal Statistical DistributionOutcomePatientsPhasePhase I Clinical TrialsPopulationProbabilityResearchResearch PersonnelResourcesSourceToxic effectUnited States National Institutes of Healthbasedesignresponse
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
We present a new adaptive Bayesian method for dose-finding in phase I clinical trials based on both response and
toxicity under the assumption that the thresholds of response and toxicity jointly follow a bivariate log-normal
distribution. Responses are rare in cancer trials. But biological responses may be common, and may help decide
how aggressive a phase I escalation should be. In an ideal decision theory framework, the choice of dose for each
successive patient would incorporate what is best for the patient, together with the value of the information to be
obtained for the trial. However, to evaluate the latter explicitly would be computationally extremely difficult. For
simplicity, we restrict attention to the probability of each outcome for the next patient only. The model assumes that
response and toxicity events happen depending on the respective dose thresholds for the individual, and provides a
framework for incorporating prior information about the population threshold distribution, as well as accumulated
data. The next dose can be assigned to maximize expected utility. A simple utility function places positive utility
only on the co-occurrence of response and non-toxicity. Computer simulation results show that the proposed design
reliably chooses the preferred dose under different scenarios and different priors.
这个子项目是众多研究子项目之一
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROGER S. DAY其他文献
ROGER S. DAY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROGER S. DAY', 18)}}的其他基金
相似海外基金
Evaluation and construction of the Bayesian method to accelerate drug development
加速药物开发的贝叶斯方法的评估和构建
- 批准号:
23K11015 - 财政年份:2023
- 资助金额:
$ 0.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Measurement of economic disparity using the Bayesian method
使用贝叶斯方法测量经济差距
- 批准号:
16K03589 - 财政年份:2016
- 资助金额:
$ 0.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
- 批准号:
9249077 - 财政年份:2016
- 资助金额:
$ 0.03万 - 项目类别:
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
- 批准号:
9035008 - 财政年份:2016
- 资助金额:
$ 0.03万 - 项目类别:
Improvement of McNemar test using Bayesian method
使用贝叶斯方法改进麦克尼马尔检验
- 批准号:
16K19249 - 财政年份:2016
- 资助金额:
$ 0.03万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Hierarchical Bayesian method for analyzing high polymorphic HLA genome sequence
分析高多态性 HLA 基因组序列的分层贝叶斯方法
- 批准号:
15H02775 - 财政年份:2015
- 资助金额:
$ 0.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Correcting Hazard Ratio Estimates for Outcome Misclassification: a Bayesian Method
纠正结果错误分类的风险比估计:贝叶斯方法
- 批准号:
327718 - 财政年份:2015
- 资助金额:
$ 0.03万 - 项目类别:
Operating Grants














{{item.name}}会员




