STOCHASTIC BIOCHEMICAL SIMULATION OF ACTIN-BASED FIBROBLAST CELL SPREADING
基于肌动蛋白的成纤维细胞扩散的随机生化模拟
基本信息
- 批准号:7601425
- 负责人:
- 金额:$ 0.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAlgorithmsBiochemicalBiochemical ReactionCell membraneCell modelCellsCellular MorphologyComputer Retrieval of Information on Scientific Projects DatabaseComputer SimulationComputing MethodologiesCytoskeletonData SourcesDevelopmentExtracellular Matrix ProteinsFibroblastsFibronectinsFundingGoalsGrantGrowthImageInstitutionLinuxMeasuresMethodsMicrofilamentsModelingMolecularMovementNatureNumbersPhysiological ProcessesPlayProbabilityProcessProgramming LanguagesRateReactionResearchResearch PersonnelResourcesRoleRunningSamplingServicesSignal TransductionSimulateSourceTestingTimeUnited States National Institutes of HealthUniversitiesWorkbasecell motilitydayextracellularpolymerizationprofessorprogramsreaction rateresponsesimulation
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Cell motility plays important roles in many physiological processes. Actin-based cell motility is one of the mechanisms that drive cell movement, cell migration and cell morphology in response to extracellular and intracellular signals. Our collaborators, Professor Michael Sheetz and his colleagues at Columbia University, have recently developed quantitative imaging approaches to measure the spreading of mammalian fibroblast cells when they contact extracellular matrix proteins such as fibronectin (Dubin-Thaler, et al Biophys. J. 2004, 86: 1794-1806). We have developed a computational method to model this process in order to understand how cellular signals regulate cell spreading through the motility machinery based on actin cytoskeleton. The goal of this project is to understand whether the signal-regulated and actin-based biochemical reactions that describe the regulated assembly and disassembly of actin filament networks can be used to obtain the quantitative model of cell spreading. We use a stochastic approach to simulate the dynamic growth of actin cytoskeleton which pushes cell membrane forward and results in cell spreading. The main algorithm of our computer simulation program is based on Gillespie's First Method of stochastic simulation of biochemical reactions. The biochemical reactions involved in the simulation of actin-based cell spreading process include actin filament polymerization, actin filament branching and actin filament capping. The growth of actin cytoskeleton based on these biochemical reactions and the movement of cell membrane caused by cytoskeleton growth are simulated in details. Within each loop of Monte Carlo simulation, every actin filament is subject to the calculation of the rates of three actin-based biochemical reactions and the probability distribution based on all reaction rates is sampled to determine which reaction to occur at next step. During this simulation, more and more actin filaments are created as cell keeps spreading, and based on the input molecular concentrations, the number of actin filaments can reach more than 50,000. Therefore the simulation of actin-based cell spreading needs significant amount of computing power to be able to reach biologically meaningful time duration of cell spreading, usually about 2 to 3 minutes. Figure 1 illustrates the stochastic algorithm used by the simulation program. The simulation program has been developed using C++ program language, compiled by GCC 3.4, and tested in Redhat Enterprise Linux 4 in both Intel Pentium4 platform and Intel Itanium2 platform. Based on the nature of this simulation, we need to apply for a Development (Expedited) Allocation on TeraGrid SDSC IA64 Linux Cluster. Since Development Allocation allows up to 30,000 Service Units, We plan to use 48 nodes (96 Itanium2 processors) for 13 days to run our simulation. We can access the TeraGrid using SecureShell connection directly to transfer source and data files and perform command line work.
这个子项目是许多研究子项目中的一个
由NIH/NCRR资助的中心赠款提供的资源。子项目和
研究者(PI)可能从另一个NIH来源获得了主要资金,
因此可以在其他CRISP条目中表示。所列机构为
研究中心,而研究中心不一定是研究者所在的机构。
细胞运动在许多生理过程中起着重要的作用。基于肌动蛋白的细胞运动是响应细胞外和细胞内信号而驱动细胞运动、细胞迁移和细胞形态的机制之一。我们的合作者,哥伦比亚大学的Michael Sheetz教授和他的同事,最近开发了定量成像方法来测量哺乳动物成纤维细胞在接触细胞外基质蛋白如纤连蛋白时的扩散(Dubin-Thaler等人Biophys. J. 2004,86:1794-1806)。我们已经开发了一种计算方法来模拟这一过程,以了解细胞信号如何通过基于肌动蛋白细胞骨架的运动机制来调节细胞扩散。本项目的目标是了解信号调节和肌动蛋白为基础的生化反应,描述了调节组装和拆卸的肌动蛋白丝网络可以用来获得细胞铺展的定量模型。我们使用随机方法来模拟肌动蛋白细胞骨架的动态生长,它推动细胞膜向前,导致细胞铺展。我们的计算机模拟程序的主要算法是基于吉莱斯皮的生化反应随机模拟的第一方法。模拟肌动蛋白细胞铺展过程涉及的生化反应包括肌动蛋白丝聚合、肌动蛋白丝分支和肌动蛋白丝帽化。详细模拟了基于这些生化反应的肌动蛋白细胞骨架的生长以及由细胞骨架生长引起的细胞膜运动。在蒙特卡罗模拟的每个循环中,每个肌动蛋白丝都要计算三个基于肌动蛋白的生化反应的速率,并对基于所有反应速率的概率分布进行采样,以确定下一步发生哪个反应。在这个模拟过程中,随着细胞的不断扩散,越来越多的肌动蛋白丝被创建,并且基于输入的分子浓度,肌动蛋白丝的数量可以达到50,000以上。因此,基于肌动蛋白的细胞铺展的模拟需要大量的计算能力,以能够达到细胞铺展的生物学上有意义的持续时间,通常约2至3分钟。图1说明了模拟程序使用的随机算法。仿真程序采用C++语言开发,GCC3.4编译,并在Intel Pentium 4和Intel Itanium 2平台的Redhat Enterprise Linux 4上进行了测试。基于此模拟的性质,我们需要申请TeraGrid SDSC IA 64 Linux集群的开发(加速)分配。由于开发分配允许多达30,000个服务单元,我们计划使用48个节点(96个Itanium 2处理器)运行13天的模拟。我们可以使用SecureShell连接直接访问TeraGrid,以传输源文件和数据文件,并执行命令行工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srinivas Ravi V Iyengar其他文献
Srinivas Ravi V Iyengar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srinivas Ravi V Iyengar', 18)}}的其他基金
Systems Pharmacology for overcoming cell variability
克服细胞变异性的系统药理学
- 批准号:
10437864 - 财政年份:2020
- 资助金额:
$ 0.03万 - 项目类别:
Systems Pharmacology for overcoming cell variability
克服细胞变异性的系统药理学
- 批准号:
10656377 - 财政年份:2020
- 资助金额:
$ 0.03万 - 项目类别:
Systems Pharmacology for overcoming cell variability
克服细胞变异性的系统药理学
- 批准号:
10246261 - 财政年份:2020
- 资助金额:
$ 0.03万 - 项目类别:
Systems Pharmacology for overcoming cell variability
克服细胞变异性的系统药理学
- 批准号:
10810110 - 财政年份:2020
- 资助金额:
$ 0.03万 - 项目类别:
Mouse Models for Systems Therapeutics Degenerative Diseases
用于系统治疗退行性疾病的小鼠模型
- 批准号:
9244242 - 财政年份:2017
- 资助金额:
$ 0.03万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 0.03万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 0.03万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 0.03万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 0.03万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 0.03万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 0.03万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 0.03万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 0.03万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 0.03万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 0.03万 - 项目类别:
Continuing Grant