NOVEL ANTI-CANCER DRUG DESIGN TARGETING AICAR TRANSFORMYLASE

针对 AICAR 转化酶的新型抗癌药物设计

基本信息

  • 批准号:
    7601657
  • 负责人:
  • 金额:
    $ 0.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-05-01 至 2008-04-30
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Cancer cells rely more heavily on the de novo purine biosynthetic pathway than normal cells, which favor the salvage pathway as their main purine source. The main enzymatic targets in the de novo pathway for potential anti-cancer drug(s) are two folate-dependent transformylases, glycinamide ribonucleotide transformylase (GAR Tfase) and amino-imidazole carboxamide ribonucleotide transformylase (AICAR Tfase). The GAR Tfase structure was solved over a decade ago; however, the enzyme has many flexible loops in its active site that has compounded the problem of structure-based drug design and elucidation of its reaction mechanism. A recent fluorofolate complex structure has revealed that this complex seems to most closely represent the active state structure. A comprehensive comparative AutoDock study validated this new structural template for our continuing efforts on structure-based drug design. Our more recently determined AICAR Tfase structure presents a new target. In some ways it will be a better target because its kinetics are pH-independent and it has a relatively rigid active site. AICAR Tfase inhibitors also have potential use in treatment of inflammatory diseases, such as rheumatoid arthritis. On the other hand, it is highly desirable to discover alternative structural scaffold(s) to design a new generation of specific inhibitors, not just the traditional antifolates, We already used AutoDock to virtually screen the pharmacophore-representative NCI Diversity Set by utilizing NCRR/NBCR and Scripps sponsored computing clusters.
这个子项目是许多研究子项目中的一个 由NIH/NCRR资助的中心赠款提供的资源。子项目和 研究者(PI)可能从另一个NIH来源获得了主要资金, 因此可以在其他CRISP条目中表示。所列机构为 研究中心,而研究中心不一定是研究者所在的机构。 癌细胞比正常细胞更严重地依赖于从头嘌呤生物合成途径,这有利于补救途径作为其主要嘌呤来源。潜在抗癌药物的从头途径中的主要酶靶标是两种叶酸依赖性转化酶,甘氨酰胺核糖核苷酸转化酶(GAR Tfase)和氨基咪唑甲酰胺核糖核苷酸转化酶(AICAR Tfase)。GAR Tfase的结构在十多年前就已经解决了;然而,该酶在其活性部位有许多柔性环,这使得基于结构的药物设计和阐明其反应机制的问题变得复杂。最近的氟叶酸络合物结构表明,这种络合物似乎最接近地代表了活性态结构。一项全面的AutoDock比较研究验证了这种新的结构模板,使我们能够继续致力于基于结构的药物设计。我们最近确定的AICAR Tfase结构提出了一个新的目标。在某些方面,它将是一个更好的目标,因为它的动力学是pH无关的,它有一个相对刚性的活性位点。AICAR Tfase抑制剂还具有治疗炎性疾病如类风湿性关节炎的潜在用途。另一方面,非常需要发现替代结构支架来设计新一代特异性抑制剂,而不仅仅是传统的抗叶酸剂。我们已经使用AutoDock通过利用NCRR/NBCR和Scripps赞助的计算集群来虚拟筛选代表药效团的NCI多样性集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IAN A WILSON其他文献

IAN A WILSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IAN A WILSON', 18)}}的其他基金

Structural Biology Core
结构生物学核心
  • 批准号:
    10549644
  • 财政年份:
    2023
  • 资助金额:
    $ 0.89万
  • 项目类别:
Structural and Modeling Core
结构和建模核心
  • 批准号:
    10514323
  • 财政年份:
    2022
  • 资助金额:
    $ 0.89万
  • 项目类别:
High-throughput assays and small-molecule discovery of antiviral candidates targeting influenza hemagglutinin
针对流感血凝素的抗病毒候选药物的高通量测定和小分子发现
  • 批准号:
    10397532
  • 财政年份:
    2021
  • 资助金额:
    $ 0.89万
  • 项目类别:
High-throughput assays and small-molecule discovery of antiviral candidates targeting influenza hemagglutinin
针对流感血凝素的抗病毒候选药物的高通量测定和小分子发现
  • 批准号:
    10612773
  • 财政年份:
    2021
  • 资助金额:
    $ 0.89万
  • 项目类别:
Exploiting Vulnerability on Influenza Virus
利用流感病毒的漏洞
  • 批准号:
    9526599
  • 财政年份:
    2017
  • 资助金额:
    $ 0.89万
  • 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
  • 批准号:
    10336287
  • 财政年份:
    2015
  • 资助金额:
    $ 0.89万
  • 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
  • 批准号:
    10643721
  • 财政年份:
    2015
  • 资助金额:
    $ 0.89万
  • 项目类别:
Exploiting sites of vulnerability on influenza viruses
利用流感病毒的脆弱点
  • 批准号:
    9114253
  • 财政年份:
    2015
  • 资助金额:
    $ 0.89万
  • 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
  • 批准号:
    10427133
  • 财政年份:
    2015
  • 资助金额:
    $ 0.89万
  • 项目类别:
PROJECT 2:Structural studies of SOSIP trimers
项目2:SOSIP三聚体的结构研究
  • 批准号:
    10083182
  • 财政年份:
    2015
  • 资助金额:
    $ 0.89万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 0.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 0.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 0.89万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 0.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 0.89万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 0.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 0.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 0.89万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 0.89万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 0.89万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了