Inverse Geometry CT for Dose-efficient Volumetric Imaging

用于剂量高效体积成像的逆几何 CT

基本信息

  • 批准号:
    7675359
  • 负责人:
  • 金额:
    $ 47.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-15 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Computed Tomography (CT) has had an enormous impact on medicine since its introduction, and many physicians consider CT (along with MRI) to be the most important recent technological innovation in medicine. Further technical improvements would have important clinical benefit, but the system design in use in current CT systems, even the most advanced clinical scanners, is not able to achieve the combination of capabilities that is needed. We recently proposed a radically different CT system design, Inverse Geometry CT (IGCT) that promises to deliver wide volumetric coverage in a single rapid scan with no "cone-beam" artifacts, high spatial and temporal resolution, improved dose efficiency, and reduced radiation dose to the patient. Our preliminary results provide strong evidence that these goals can be achieved The goal of this proposal is to perform research leading to and including designing and constructing a fullscale prototype IGCT system capable of animal and human scanning, to quantitate its performance, and to perform pilot in-vivo studies. The research involves a collaboration between Stanford University and GE's Global Research (GEGR) Center, building on the pioneering work on IGCT performed at Stanford and the important advances and unique capabilities of the team at GEGR. The groups will collaboratively optimize the system design, perfect calibration and reconstruction algorithms, and perform detailed evaluations. The Stanford group, led by the PI, will be responsible for defining the clinical requirements and performing the animal and human studies. The GEGR group, led by Bruno De Man, will be responsible for detailed system design and construction. While the significance and potential impact of this research are very large, the scope and risk preclude it from being performed by industry alone and public support is required. At the same time, the impact of the requested budget is amplified by existing funding and ongoing research at both Stanford and GEGR, and by a commitment of 1$M from GE Healthcare to fund construction of the gantry based system. We believe that important research and clinical application would be possible with CT systems capable of much wider volumetric coverage in short scan times, requiring lower radiation dose than present systems, and delivering uncompromised image quality and temporal resolution. CT technology currently in use is not up to this task, and that a new approach is needed. We believe, and our preliminary studies show, that our IGCT approach will be able to open this new era in CT scanning.
描述(由申请人提供):计算机断层扫描(CT)自问世以来对医学产生了巨大影响,许多医生认为CT(沿着MRI)是医学领域最重要的近期技术创新。进一步的技术改进将具有重要的临床受益,但是当前CT系统中使用的系统设计,即使是最先进的临床扫描仪,也无法实现所需的功能组合。我们最近提出了一个完全不同的CT系统设计,逆几何CT(IGCT),承诺提供广泛的体积覆盖在一个单一的快速扫描,没有“锥束”伪影,高空间和时间分辨率,提高剂量效率,并减少辐射剂量的病人。我们的初步结果提供了强有力的证据,这些目标是可以实现的。本提案的目标是进行研究,导致并包括设计和构建一个全尺寸的原型IGCT系统能够动物和人类扫描,量化其性能,并进行试点体内研究。这项研究涉及斯坦福大学和通用电气全球研究中心(GEGR)之间的合作,建立在斯坦福大学在IGCT方面的开创性工作以及GEGR团队的重要进展和独特能力的基础上。这些小组将合作优化系统设计,完善校准和重建算法,并进行详细的评估。由PI领导的斯坦福大学小组将负责定义临床要求并进行动物和人体研究。由Bruno De Man领导的GEGR小组将负责详细的系统设计和建造。虽然这项研究的重要性和潜在影响非常大,但其范围和风险使其无法单独由工业界进行,需要公众的支持。与此同时,斯坦福大学和GEGR的现有资金和正在进行的研究,以及GE Healthcare承诺为基于机架的系统的建设提供100万美元的资金,放大了所要求预算的影响。我们相信,重要的研究和临床应用将是可能的CT系统能够更广泛的体积覆盖在较短的扫描时间,需要较低的辐射剂量比目前的系统,并提供不妥协的图像质量和时间分辨率。目前使用的CT技术无法胜任这项任务,需要一种新的方法。我们相信,我们的初步研究表明,我们的IGCT方法将能够开启CT扫描的新时代。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NORBERT J. PELC其他文献

NORBERT J. PELC的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NORBERT J. PELC', 18)}}的其他基金

Charge Cloud Tracker : A High-Resolution, High-DQE, Photon-Counting Energy-Discriminating X-ray Detector
电荷云跟踪器:高分辨率、高 DQE、光子计数能量辨别 X 射线探测器
  • 批准号:
    8988813
  • 财政年份:
    2015
  • 资助金额:
    $ 47.23万
  • 项目类别:
Dynamic bowtie attenuator for CT dose reduction and dynamic range control
用于减少 CT 剂量和动态范围控制的动态领结衰减器
  • 批准号:
    8707834
  • 财政年份:
    2013
  • 资助金额:
    $ 47.23万
  • 项目类别:
Dynamic bowtie attenuator for CT dose reduction and dynamic range control
用于减少 CT 剂量和动态范围控制的动态领结衰减器
  • 批准号:
    8569072
  • 财政年份:
    2013
  • 资助金额:
    $ 47.23万
  • 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
  • 批准号:
    8723652
  • 财政年份:
    2010
  • 资助金额:
    $ 47.23万
  • 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
  • 批准号:
    9116151
  • 财政年份:
    2010
  • 资助金额:
    $ 47.23万
  • 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
  • 批准号:
    8299500
  • 财政年份:
    2010
  • 资助金额:
    $ 47.23万
  • 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
  • 批准号:
    8536285
  • 财政年份:
    2010
  • 资助金额:
    $ 47.23万
  • 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
  • 批准号:
    8103901
  • 财政年份:
    2010
  • 资助金额:
    $ 47.23万
  • 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
  • 批准号:
    7941337
  • 财政年份:
    2010
  • 资助金额:
    $ 47.23万
  • 项目类别:
Inverse Geometry CT for Dose-efficient Volumetric Imaging
用于剂量高效体积成像的逆几何 CT
  • 批准号:
    7287705
  • 财政年份:
    2006
  • 资助金额:
    $ 47.23万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
  • 批准号:
    2889694
  • 财政年份:
    2023
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 47.23万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了