Charge Cloud Tracker : A High-Resolution, High-DQE, Photon-Counting Energy-Discriminating X-ray Detector
电荷云跟踪器:高分辨率、高 DQE、光子计数能量辨别 X 射线探测器
基本信息
- 批准号:8988813
- 负责人:
- 金额:$ 21.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-06 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAmplifiersAreaChargeClinicalCompton radiationComputer softwareDetectionDiagnosticDoseElectronicsElectronsElementsForce of GravityGeometryGoalsHealthHumanImageInvestigationKnowledgeLightMeasuresMechanicsMedicalModelingModificationMonte Carlo MethodMusNoisePerformancePhasePhotonsPhysicsPositioning AttributeProcessRadiationRattusReal-Time SystemsResearchResolutionRoentgen RaysRunningSemiconductorsSideSignal TransductionSiliconSourceSpeedStructureSystemThickValidationbasebreast imagingclinical applicationcomputerized data processingcontrast imagingdata acquisitiondesigndetectorelectronic dataexperienceflexibilityfluorescence imaginggallium arsenideimaging systemimprovedmodel designnovelpre-clinicalprototypequantumreconstructionresponsesensortoolultra high resolution
项目摘要
DESCRIPTION (provided by applicant): We have designed a novel photon-counting, energy discriminating x-ray detector; we hypothesize that our design can provide limiting resolution on the order of 5 microns, while also providing very high x-ray detection efficiency and adequate count rates for 25 keV photons. The basic detector unit is inexpensive and simple to manufacture, as well as radiation hard. The complexity of the detection task is shifted to the high-speed electronics and data acquisition system, which will process every single photon-created charge cloud to determine the photon's energy and position of interaction. The design could be implemented using one of several different semiconductor materials, thereby enabling clinical applications at x-ray energies ranging from 15 keV to 50 keV. This project has the overall goal of providing the tools for optimization of the detector, as well as demonstrating that ultra-high resolution can be achieved using a prototype implemented in Silicon for detection of 25 keV photons. We will build a numerical model of the detector by combining three components: 1. a Monte-Carlo simulation of photon interactions in Si; 2. a detailed description of energy-loss mechanisms for electrons to provide complete knowledge of initial charge cloud distribution in Si; and 3. a model of bias field distribution and resulting path of charges through the Si. Combining the three components permits prediction of measured signal for a given detector geometry, applied bias field and readout electronics design. We will also build a first (somewhat sub-optimal) prototype of the detector to permit validation of the model, and to permit verification of the hypothesis regarding achievable resolution. The final research product will be an accurate and validated numerical model of the Si detector, which can then be used to optimize the geometry and electronics design for a pre-clinical (or breast imaging) version of the detector. Our initial clinical goal is to enable novel x-ray phase contrast imaging systems (both propagation-based and grating-based) that are both simple to implement and dose efficient - hence the need for high resolution and high quantum detection efficiency. However, since our design is photon counting and energy-discriminating, the same basic detector design would also provide improved dose efficiency (on the order of 15% to 60% depending on the imaging task in CT) as well as being applicable to other novel imaging tasks such as k- and l-shell fluorescence imaging.
描述(由申请人提供):我们设计了一种新颖的光子计数、能量鉴别X射线检测器;我们假设我们的设计可以提供5微米量级的极限分辨率,同时还提供非常高的X射线检测效率和针对25 keV光子的足够计数率。基本探测器单元价格低廉,制造简单,而且抗辐射。探测任务的复杂性被转移到高速电子和数据采集系统上,该系统将处理每一个光子产生的电荷云,以确定光子的能量和相互作用的位置。该设计可以使用几种不同的半导体材料中的一种来实现,从而使临床应用能够在15 keV至50 keV的X射线能量范围内。该项目的总体目标是提供优化探测器的工具,并证明使用硅实现的原型可以实现超高分辨率,用于探测25 keV光子。我们将通过结合三个组件来构建探测器的数值模型:1。Si中光子相互作用的蒙特-卡罗模拟; 2.电子的能量损失机制的详细描述,以提供Si中初始电荷云分布的完整知识;以及3.偏置场分布和由此产生的电荷通过Si的路径的模型。结合这三个分量允许预测给定检测器几何形状、施加的偏置场和读出电子器件设计的测量信号。我们还将建立一个第一个(有点次优)原型的检测器,以允许验证模型,并允许验证有关可实现的分辨率的假设。最终的研究产品将是Si探测器的精确且经过验证的数值模型,然后可用于优化探测器临床前(或乳腺成像)版本的几何结构和电子设计。我们最初的临床目标是实现新颖的X射线相衬成像系统(基于传播和基于光栅),该系统既易于实现又具有剂量效率-因此需要高分辨率和高量子检测效率。然而,由于我们的设计是光子计数和能量鉴别的,相同的基本检测器设计也将提供改进的剂量效率(取决于CT中的成像任务,在15%至60%的量级上)以及适用于其他新颖的成像任务,诸如k壳层和l壳层荧光成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NORBERT J. PELC其他文献
NORBERT J. PELC的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NORBERT J. PELC', 18)}}的其他基金
Dynamic bowtie attenuator for CT dose reduction and dynamic range control
用于减少 CT 剂量和动态范围控制的动态领结衰减器
- 批准号:
8707834 - 财政年份:2013
- 资助金额:
$ 21.22万 - 项目类别:
Dynamic bowtie attenuator for CT dose reduction and dynamic range control
用于减少 CT 剂量和动态范围控制的动态领结衰减器
- 批准号:
8569072 - 财政年份:2013
- 资助金额:
$ 21.22万 - 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
- 批准号:
8723652 - 财政年份:2010
- 资助金额:
$ 21.22万 - 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
- 批准号:
9116151 - 财政年份:2010
- 资助金额:
$ 21.22万 - 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
- 批准号:
8299500 - 财政年份:2010
- 资助金额:
$ 21.22万 - 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
- 批准号:
8536285 - 财政年份:2010
- 资助金额:
$ 21.22万 - 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
- 批准号:
8103901 - 财政年份:2010
- 资助金额:
$ 21.22万 - 项目类别:
Predoctoral Training in Biomedical Imaging at Stanford University
斯坦福大学生物医学成像博士前培训
- 批准号:
7941337 - 财政年份:2010
- 资助金额:
$ 21.22万 - 项目类别:
Inverse Geometry CT for Dose-efficient Volumetric Imaging
用于剂量高效体积成像的逆几何 CT
- 批准号:
7287705 - 财政年份:2006
- 资助金额:
$ 21.22万 - 项目类别:
Inverse Geometry CT for Dose-efficient Volumetric Imaging
用于剂量高效体积成像的逆几何 CT
- 批准号:
7675359 - 财政年份:2006
- 资助金额:
$ 21.22万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 21.22万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 21.22万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 21.22万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 21.22万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 21.22万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 21.22万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 21.22万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 21.22万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 21.22万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 21.22万 - 项目类别:
Collaborative R&D