K-SPACE ENERGY SPECTRUM ANALYSIS FOR ECHO-PLANAR IMAGING
用于平面回波成像的 K 空间能量谱分析
基本信息
- 批准号:7719666
- 负责人:
- 金额:$ 2.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsApplications GrantsClinicalCollaborationsCommunitiesComputer Retrieval of Information on Scientific Projects DatabaseDataData QualityDevelopmentEcho-Planar ImagingEnvironmentFunctional Magnetic Resonance ImagingFundingFutureGoalsGrantImageImaging TechniquesInstitutionLongitudinal StudiesMagnetic Resonance ImagingMapsMedical ResearchMethodsModificationMorphologic artifactsMotionMovementNoisePhasePhysiologic pulsePredispositionProceduresPulse takingReportingReproducibilityResearchResearch PersonnelResolutionResourcesScanningSignal TransductionSourceSpectrum AnalysisTechniquesTemperatureTimeTrainingUnited States National Institutes of HealthUniversitiesWorkbaseclinical Diagnosisdesignimprovedneurosurgerynovelprograms
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
* This project was recently funded under grant R21-EB005690 to Nan-kuei Chen.
* Grant relinquished from BWH to Duke University as of November 1, 2007.
Summary
The goal of this project is to improve the quality and spatial accuracy of echo-planar imaging (EPI), so that accurate quantitative information can be derived from EPI based medical research and clinical diagnosis. EPI is one of the fastest MR imaging techniques, and has been popularly applied to various dynamic studies that require high temporal-resolution, such as functional MRI (fMRI), contrast-enhanced imaging, and MR based interventional procedures. However, EPI data quality is usually degraded by various artifacts, such as geometric distortions and susceptibility signal loss. Furthermore, the sensitivity of EPI to susceptibility field nhomogeneities makes it less reliable in EPI based longitudinal studies. Several techniques have been previously reported for EPI quality improvement and artifact reduction. However, most previously reported EPI artifact reduction methods require time-consuming field mapping scans, and therefore may not always be practical (e.g. for clinical scans and EPI based interventional MRI procedures). Here we propose to use a novel k-space energy spectrum analysis to quantify (1) the k-space energy distribution, (2) susceptibility field gradients, (3) the spatially-dependent echo time values, and (4) artifact levels directly from the acquired EPI data, without the need of additional field mapping procedure or pulse sequence modification. Various EPI artifacts (e.g. distortions and Gibb's ripple artifact) can be effectively removed using the proposed approach. Furthermore, the developed k-space energy spectrum analysis will be applied to design an optimal acquisition strategy for phase-encoded 3D parallel EPI, with an improved signal-to-noise ratio and reduced motion related artifact. We also plan to apply the proposed methods to re-analyze the previously acquired fMRI data, and retrospectively improve the longitudinal reproducibility of grouped activation. The methods developed in the proposed project will be made available to MRI community so that other research groups may use the developed methods to improve their future EPI based quantitative studies or to retrospectively improve the EPI data that were previously obtained.
[edit]
Benefits to NCIGT
* The KESA method can be applied to provide robust temperature maps using EPII through reliable phase unwrapping procedure to effectively eliminate the phase wraparounds in dynamic temperature mapping. Based on our k-space energy spectrum analysis algorithm (R21 project), a new phase mapping and unwrapping method is being designed. The MRI based temperature mapping will have a better tolerance to subject movement and susceptibility effect when the new reliable phase unwrapping procedure is included. Thus, this project supports our work in the development of new temperature mapping methods.
* Field maps using the KESA method can be used for distortion correction in EPI-base fMRI and DTI. Thus this work supports our efforts in the Neurosurgery Core.
Benefits to the Project
The IGT resource provides an essential support to the R21 project. The programming environment for development of the sequence is maintained (in part) through support from the imaging core of the resource. In addition, a training fellow attached to the IGT resource, Ming-Long Wu, is participating in the experimental work of the R21 project.
[edit]
Statement of the Collaboration in the U41 Grant Application
This R21 project was not included in original grant application because it has been funded since then.
这个子项目是众多研究子项目之一
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAN-KUEI CHEN其他文献
NAN-KUEI CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAN-KUEI CHEN', 18)}}的其他基金
Cognitive Assessment and Neuroimaging (CAN) Core E
认知评估和神经影像 (CAN) 核心 E
- 批准号:
10491860 - 财政年份:2021
- 资助金额:
$ 2.82万 - 项目类别:
Cognitive Assessment and Neuroimaging (CAN) Core E
认知评估和神经影像 (CAN) 核心 E
- 批准号:
10689312 - 财政年份:2021
- 资助金额:
$ 2.82万 - 项目类别:
Cognitive Assessment and Neuroimaging (CAN) Core E
认知评估和神经影像 (CAN) 核心 E
- 批准号:
10270192 - 财政年份:2021
- 资助金额:
$ 2.82万 - 项目类别:
Development of High-Speed and Quantitative Neuro MRI Technologies for Challenging Patient Populations
开发高速定量神经 MRI 技术来应对具有挑战性的患者群体
- 批准号:
10380037 - 财政年份:2018
- 资助金额:
$ 2.82万 - 项目类别:
Development of High-Speed and Quantitative Neuro MRI Technologies for Challenging Patient Populations
开发高速定量神经 MRI 技术来应对具有挑战性的患者群体
- 批准号:
10163273 - 财政年份:2018
- 资助金额:
$ 2.82万 - 项目类别:
Development of High-Speed and Quantitative Neuro MRI Technologies for Challenging Patient Populations
开发高速定量神经 MRI 技术来应对具有挑战性的患者群体
- 批准号:
9900072 - 财政年份:2018
- 资助金额:
$ 2.82万 - 项目类别:
Quantitative Susceptibility Mapping of Iron Accumulation in Neurocognitive Aging
神经认知衰老中铁积累的定量敏感性图
- 批准号:
9566397 - 财政年份:2017
- 资助金额:
$ 2.82万 - 项目类别:
Motion-immune neuro and body MRI for challenging patient populations
针对具有挑战性的患者群体的运动免疫神经和身体 MRI
- 批准号:
8934098 - 财政年份:2014
- 资助金额:
$ 2.82万 - 项目类别:
Motion-immune neuro and body MRI for challenging patient populations
针对具有挑战性的患者群体的运动免疫神经和身体 MRI
- 批准号:
8822404 - 财政年份:2014
- 资助金额:
$ 2.82万 - 项目类别: