Innovative Methods for Membrane Protein Crystallization
膜蛋白结晶的创新方法
基本信息
- 批准号:7313151
- 负责人:
- 金额:$ 33.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingActive SitesAddressAdoptedAmino AcidsAntibodiesAreaAsthmaBiologicalBuffersCarbohydratesCardiovascular systemCase MixesCategoriesCell CycleCell DeathCell LineCellsCentral Nervous System DiseasesChemicalsChromatographyClassClassificationCollaborationsCommunitiesComplexConditionCrystal FormationCrystallizationCrystallographyCystic FibrosisDetergentsDevelopmentDiagnosticDrug DesignEngineeringEnzymesEscherichia coliExcisionFundingFutureG-Protein-Coupled ReceptorsGene DeliveryGene ExpressionGenerationsGenomicsHomologous ProteinInclusion BodiesIndividualInfectionInflammationInsectaIntegral Membrane ProteinIon ChannelKnowledgeLeadLeftLipidsLiquid substanceLocalizedMalignant NeoplasmsMammalian CellMapsMarketingMembraneMembrane BiologyMembrane ProteinsMetabolicMethodsMinorModelingMolecularNeuraxisNumbersObesityPainPlayPliabilityPoint MutationPost-Translational Protein ProcessingPrecipitationPrincipal InvestigatorProcessProductionProtein OverexpressionProteinsProteolysisRangeRateReceptor SignalingRecombinant ProteinsRecombinantsRelative (related person)ResearchResearch PersonnelRoboticsRoleSaccharomycesSaccharomyces cerevisiaeScientistScreening procedureSemliki forest virusSolubilitySolutionsSolventsSourceSpecialized CenterStructureSurfaceSuspension CultureSystemTechnologyTemperatureTestingTherapeuticTimeTodayToxic effectTreatment ProtocolsUrinationVaccinia virusViralVirusWorkaqueousbasecell growthcofactordaygastrointestinalglycosylationimprovedinnovationinnovative technologiesknowledge basemacromoleculemilligramnovel diagnosticsnovel strategiesnovel therapeuticspreventprogramsprotein expressionprotein foldingprotein structurereceptorresearch studystable cell linestructural biologystructural genomicssuccesstechnology developmentvector
项目摘要
DESCRIPTION (provided by applicant): Project Summary: This project combines innovative technologies in eukaryotic membrane protein expression, solubilization, stablization and crystallization. An innovative protein expression system has been developed by integrating technologies that appear to overcome the major limitations for the manufacturing of mg quantities of recombinant protein, including IMPs, in mammalian cells. Stable, single cell (clonal) lines can be selected to enable controlled over-expression of protein, thereby allowing the selection of an expression system that optimizes specific activity and minimizes aggregation and/or the production of non- functional protein. A novel diagnostic technology provides the ability to rapidly determine optimal solution conditions for protein stability/solubility, reducing unwanted nonspecific aggregation. This same diagnostic can be used to map out solution conditions more likely to result in crystal formation. Specifically, we propose to: 1. Demonstrate the ability to produce milligram quantities of biologically functional membrane proteins from different membrane protein classes in mammalian cells. 2. Demonstrate the utility of a novel diagnostic technology, self-interaction chromatography (SIC), to determine second virial coefficients for different protein solvent conditions as a means to optimize co-solvent combinations and improve protein solubility and stability. 3. Demonstrate the use of SIC as an efficient, knowledge-based approach for the production of diffraction-quality crystals of membrane proteins. The combination of these technologies is expected to improve success rates for determining structures of integral membrane proteins. This project directly addresses several of the current impediments to membrane protein structural biology (outlined on pages 3-6 of this RFA) including protein production, stability, solubility and crystallization. The project involves collaborations with more than fifteen NIH-funded investigators studying different biologically and medically relevant membrane proteins. The project will not only support structural studies performed by the PI, but also provide protein and crystals to other individual crystallographers, NMR spectroscopists and one membrane protein "Specialized Center". Relevance: This work will directly support future efforts to develop new therapeutics as well as enhancing our knowledge of membrane biology. Membrane proteins account for 70% of the drugable market, addressing a wide range of therapeutic categories including pain, asthma, inflammation, obesity, cancer, cardiovascular, metabolic, gastrointestinal and central nervous system diseases cystic fibrosis and more.
描述(申请人提供):项目概述:该项目结合了真核膜蛋白表达、溶解、稳定和结晶方面的创新技术。通过整合似乎克服了在哺乳动物细胞中制造包括IMPS在内的大量重组蛋白的主要限制的技术,开发了一种创新的蛋白质表达系统。可以选择稳定的单细胞(克隆)系以实现受控的蛋白质过度表达,从而允许选择优化特定活性并使非功能蛋白质的聚集和/或产生最小化的表达系统。一种新的诊断技术提供了快速确定蛋白质稳定性/溶解性的最佳溶液条件的能力,减少了不必要的非特异性聚集。同样的诊断可以用来绘制出更有可能导致晶体形成的溶液条件。具体地说,我们建议:1.证明在哺乳动物细胞中从不同的膜蛋白类别中产生毫克量生物功能膜蛋白的能力。2.证明了一种新的诊断技术--自作用层析(SIC)用于测定不同蛋白质溶剂条件下的第二维里系数,作为优化共溶剂组合、提高蛋白质的溶解性和稳定性的手段。3.展示了使用碳化硅作为一种有效的、基于知识的方法来生产膜蛋白的衍射级晶体。这些技术的结合有望提高确定完整膜蛋白结构的成功率。该项目直接解决了目前膜蛋白结构生物学的几个障碍(在本RFA的第3-6页中概述),包括蛋白质生产、稳定性、溶解性和结晶。该项目涉及与NIH资助的15多名研究人员合作,研究不同的生物和医学相关的膜蛋白。该项目不仅将支持PI进行的结构研究,还将向其他个人结晶学家、核磁共振光谱仪和一个膜蛋白质“专门中心”提供蛋白质和晶体。相关性:这项工作将直接支持未来开发新疗法的努力,以及增强我们对膜生物学的知识。膜蛋白占可用药市场的70%,涉及范围广泛的治疗类别,包括疼痛、哮喘、炎症、肥胖、癌症、心血管、代谢、胃肠道和中枢神经系统疾病、囊性纤维化等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence J Delucas其他文献
Lawrence J Delucas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence J Delucas', 18)}}的其他基金
Production & Crystallization of Membrane Protein for 3D Structure
生产
- 批准号:
8028213 - 财政年份:2010
- 资助金额:
$ 33.45万 - 项目类别:
Production & Crystallization of Membrane Protein for 3D Structure
生产
- 批准号:
8309973 - 财政年份:2010
- 资助金额:
$ 33.45万 - 项目类别:
Production & Crystallization of Membrane Protein for 3D Structure
生产
- 批准号:
8520338 - 财政年份:2010
- 资助金额:
$ 33.45万 - 项目类别:
Production & Crystallization of Membrane Protein for 3D Structure
生产
- 批准号:
8149901 - 财政年份:2010
- 资助金额:
$ 33.45万 - 项目类别:
Innovative Methods for Membrane Protein Crystallization
膜蛋白结晶的创新方法
- 批准号:
7880319 - 财政年份:2009
- 资助金额:
$ 33.45万 - 项目类别:
Innovative Methods for Membrane Protein Crystallization
膜蛋白结晶的创新方法
- 批准号:
7938434 - 财政年份:2008
- 资助金额:
$ 33.45万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 33.45万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




