Comprehensive annotation of subcellular localization of entire organisms
整个生物体亚细胞定位的综合注释
基本信息
- 批准号:7500843
- 负责人:
- 金额:$ 31.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-24 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAlgorithmsAnimal ModelArabidopsisArtsAtlasesBenchmarkingBindingBioinformaticsBiological TransportBiological databasesBiologyCategoriesCell CycleCell NucleusCellsCerealsChloroplastsClassCollectionCommunitiesComputational BiologyComputer SimulationDNA BindingDailyDataData SetDatabasesDevelopmentEnvironmentEukaryotaEukaryotic CellEvolutionFingerprintFollow-Up StudiesGenerationsGenesGenomeGoalsGolgi ApparatusHomo sapiensHumanIntegral Membrane ProteinInternetLaboratory OrganismLeftLocalesLocalizedLysosomesMachine LearningMammalsMapsMembraneMethodsMiningMinorMitochondriaMouse-ear CressNuclearNuclear Localization SignalNuclear Matrix-Associated ProteinsNuclear ProteinNuclear ProteinsOntologyOrganismOutcomePeptide Signal SequencesPerformancePlantsPlasmaPlayPropertyProteinsProteomeProtocols documentationPubMedQuality ControlRNA SplicingResearchResourcesRibosomesRoleSequence AlignmentSequence AnalysisSignal TransductionSoftware ToolsSorting - Cell MovementStructureSwissProtSystemTechniquesTodayTrainingTranslatingVariantbasedata miningdesignimprovedinsightnovelnumb proteinprogramsprotein functionresearch studysoftware systemsstructural genomicssuccesstool
项目摘要
DESCRIPTION (provided by applicant): The difference between the number of proteins with known sequence and those with well- studied function (sequence-function gap) is growing daily. One well-defined coarse-grained aspect of function is the native subcellular localization of a protein that has a central role in the Gene Ontology (GO) hierarchy. Many detailed and high-throughput experiments annotate localization. Where experiments do not reach, homology-based and de novo prediction methods succeed. Here, we propose the development of a comprehensive system that combines experimental resources with data mining techniques and novel prediction methods with the objective to annotate localization for entirely sequenced eukaryotes at an unprecedented detail and accuracy. Firstly, we propose to gather all available data and all relevant methods to build a comprehensive localization atlas for human and Arabidopsis. Secondly, we plan to develop novel methods tailored specifically to capture proteins for which we are left with no reliable annotations after completing the first step. We assume that these methods will focus on the prediction of the particular type of membrane into which an integral membrane protein is inserted, and of the native localization for minor eukaryotic compartments (ER, Golgi, lysosome). Thirdly, we propose the implementation of specific improvements over today's motif-based methods for secreted and nuclear proteins, as well as the extension of de novo predictions for the major compartments. An important objective will be to maintain high levels of performance for splice variants and for sequence fragments. Overall, the project will require the analysis of existing biological databases, the development of novel methods, and the combination of existing ones; it will generate novel information available through internet servers, standalone programs and databases.
RELEVANCE: The annotations generated by our system will aid the design of detailed and high-throughput experimental studies. In particular, localization may increase in its relevance as one essential feature used to infer networks of interactions. The ultimate goal of our project is the generation of an atlas that maps all proteins in a cell. Eventually, this atlas will constitute a 4D map; it will localize proteins in their 3D cellular environments and resolve the coarse-grained dynamics of the system, e.g. "expression on ribosomes, bind importin, transport into nucleus, bind DNA, bind exportin, export out of nucleus; next cell cycle". The components proposed here constitute one crucial building block toward such a 4D map of a cell.
描述(由申请人提供):具有已知序列的蛋白质与具有充分研究功能的蛋白质(序列-功能间隙)之间的差异日益增加。功能的一个定义明确的粗粒度方面是在基因本体(GO)层次结构中具有中心作用的蛋白质的原生亚细胞定位。许多详细和高通量的实验注释了定位。在实验不能达到的地方,基于同源性和从头开始的预测方法是成功的。在此,我们建议开发一个综合系统,将实验资源与数据挖掘技术和新颖的预测方法相结合,以前所未有的细节和准确性注释全测序真核生物的定位。首先,我们建议收集所有可用的数据和所有相关的方法,建立一个全面的人类和拟南芥定位图谱。其次,我们计划开发专门用于捕获在完成第一步后没有可靠注释的蛋白质的新方法。我们假设这些方法将集中于预测整合膜蛋白插入的特定类型的膜,以及较小的真核细胞室(内质网,高尔基体,溶酶体)的天然定位。第三,我们建议对目前基于基序的分泌蛋白和核蛋白方法进行具体改进,并扩展对主要隔室的从头预测。一个重要的目标将是保持高水平的性能剪接变体和序列片段。总的来说,该项目将需要分析现有的生物数据库,发展新的方法,并将现有的方法结合起来;它将通过互联网服务器、独立程序和数据库产生新的信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BURKHARD ROST其他文献
BURKHARD ROST的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BURKHARD ROST', 18)}}的其他基金
Novel method to identify competing protein-protein binders
识别竞争性蛋白质-蛋白质结合物的新方法
- 批准号:
7362003 - 财政年份:2009
- 资助金额:
$ 31.81万 - 项目类别:
Comprehensive annotation of subcellular localization of entire organisms
整个生物体亚细胞定位的综合注释
- 批准号:
7342317 - 财政年份:2007
- 资助金额:
$ 31.81万 - 项目类别:
Comprehensive annotation of subcellular localization of entire organisms
整个生物体亚细胞定位的综合注释
- 批准号:
7681626 - 财政年份:2007
- 资助金额:
$ 31.81万 - 项目类别:
Comprehensive annotation of subcellular localization of entire organisms
整个生物体亚细胞定位的综合注释
- 批准号:
7924860 - 财政年份:2007
- 资助金额:
$ 31.81万 - 项目类别:
CORE--COMPUTATIONAL BIOLOGY /BIOMEDICAL INFORMATICS SCIE
核心--计算生物学/生物医学信息学 SCIE
- 批准号:
7050972 - 财政年份:2005
- 资助金额:
$ 31.81万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 31.81万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 31.81万 - 项目类别:
Studentship