Development of "Evidential" Methodology for the Analysis of Genetic Data
开发遗传数据分析的“证据”方法
基本信息
- 批准号:7546976
- 负责人:
- 金额:$ 6.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:BackcrossingsBeliefCharacteristicsComplexComputer SimulationDataData SetDevelopmentDisease modelGenesGeneticGenetic ModelsGerm CellsHeterogeneityInvestigationKnowledgeMeasuresMethodologyMethodsModelingNuclear FamilyPenetranceProbabilityResearch PersonnelSample SizeSamplingSiblingsSpecific qualifier valueTestingVariantdesigngenetic analysisgenetic linkage analysisgenome wide association studyresearch studytrait
项目摘要
DESCRIPTION (provided by applicant): The "evidential" paradigm is a statistical paradigm, an alternative to frequentist and Bayesian paradigms for statistical inference. The evidential paradigm provides 4 major advantages over these other paradigms when analyzing genetic data: It (1) provides an objective measure of evidence; (2) has good operating characteristics (low error probabilities); (3) decouples the error probabilities from the measure of evidence; and - perhaps the advantage with the greatest potential impact - (4) provides better approaches to deal with the multiple testing problem. In Strug & Hodge (2006a, b) we quantified these advantages for linkage analysis of several simple genetic models, mostly with known parameters. Here we propose to extend our investigations to more complex genetic models, also with unknown parameters, and to association analysis: Specifically, we will (1) Extend linkage findings to association analysis, including genome-wide association studies; (2) Quantify error probabilities for linkage of more complex disease models; and (3) Develop and test new evidential methodology for linkage analysis of complex unknown traits. We will test and characterize new methods via rigorous theoretical analyses, supplemented by realistic computer simulations. /Relevance The long-term objective is to make the evidential paradigm, with its multiple testing advantages, available for use when analyzing all types of genetic data. As a result, some current problems imposed by conducting multiple tests on genetic data, for example, investigators' reluctance to thoroughly analyze their collected data, will no longer bedevil the field or stunt the advancement of knowledge.
描述(由申请人提供):“证据”范式是一种统计范式,是统计推断的频率论和贝叶斯范式的替代方案。在分析遗传数据时,证据范式提供了4个主要优势:(1)提供了客观的证据衡量标准;(2)具有良好的操作特性(3)从证据的度量中计算错误概率;并且--也许是具有最大潜在影响的优点--(4)提供了处理多重测试问题的更好方法。在Strug & Hodge(2006 a,B)中,我们量化了几个简单遗传模型的连锁分析的这些优势,大多数是已知参数的。在这里,我们建议将我们的研究扩展到更复杂的遗传模型,也有未知的参数,并关联分析:具体来说,我们将(1)将连锁发现扩展到关联分析,包括全基因组关联研究;(2)量化更复杂的疾病模型的连锁错误概率;(3)开发和测试新的证据方法,用于复杂未知性状的连锁分析。我们将通过严格的理论分析来测试和表征新方法,并辅以现实的计算机模拟。长期目标是使证据范式具有多种测试优势,可用于分析所有类型的遗传数据。因此,目前对基因数据进行多重测试所带来的一些问题,例如调查人员不愿意彻底分析他们收集的数据,将不再困扰该领域或阻碍知识的进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lisa Joanna Strug其他文献
Lisa Joanna Strug的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Decision Regarding Aspiration, Belief, and Social Economic Status in Education and Job Market
关于教育和就业市场的愿望、信仰和社会经济地位的决定
- 批准号:
2858422 - 财政年份:2023
- 资助金额:
$ 6.18万 - 项目类别:
Studentship
Doctoral Dissertation Research in Economics: Belief Formation and Adaptation to Climate Change
经济学博士论文研究:信念的形成与气候变化的适应
- 批准号:
2242263 - 财政年份:2023
- 资助金额:
$ 6.18万 - 项目类别:
Standard Grant
Paranoia and Bias in Social Belief Updating in Clinical High Risk for Psychosis
精神病临床高危人群的偏执和社会信仰偏见更新
- 批准号:
10750091 - 财政年份:2023
- 资助金额:
$ 6.18万 - 项目类别:
In the Name of God: Examining how religious belief and practice influences violent behaviours within NRMs through the study of politically violent gro
以上帝之名:通过研究政治暴力群体,审视宗教信仰和实践如何影响 NRM 内的暴力行为
- 批准号:
2890665 - 财政年份:2023
- 资助金额:
$ 6.18万 - 项目类别:
Studentship
Effects of language background and belief on goal-oriented reading: An empirical study
语言背景和信念对目标导向阅读的影响:一项实证研究
- 批准号:
23K00683 - 财政年份:2023
- 资助金额:
$ 6.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling the dynamics of belief formation: Towards a computational understanding of the timing and accuracy of probability judgments
对信念形成的动态进行建模:对概率判断的时间和准确性进行计算理解
- 批准号:
2350258 - 财政年份:2023
- 资助金额:
$ 6.18万 - 项目类别:
Continuing Grant
The Norms of Belief and Assertion Investigated by the Methods of Language Analysis and Experimental Philosophy
语言分析和实验哲学方法研究的信念和断言规范
- 批准号:
23K00010 - 财政年份:2023
- 资助金额:
$ 6.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DDRIG in DRMS: Measuring Persuasion Without Measuring a Prior Belief: A New Application of Planned Missing Data Techniques
DRMS 中的 DDRIG:在不衡量先验信念的情况下衡量说服力:计划丢失数据技术的新应用
- 批准号:
2242100 - 财政年份:2023
- 资助金额:
$ 6.18万 - 项目类别:
Standard Grant
Bilinear Inference Based on Belief Propagation for Non-Orthogonal Multiple Access with Massive IoT Devices
基于置信传播的海量物联网设备非正交多址双线性推理
- 批准号:
23K13335 - 财政年份:2023
- 资助金额:
$ 6.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Belief in mind-body dualism and mental health: The case of body-image issues among social-media users.
对身心二元论和心理健康的信仰:社交媒体用户中身体形象问题的案例。
- 批准号:
2891113 - 财政年份:2023
- 资助金额:
$ 6.18万 - 项目类别:
Studentship














{{item.name}}会员




