Scalable tools for the analysis of chemical compounds using graph-based querying

使用基于图形的查询分析化合物的可扩展工具

基本信息

  • 批准号:
    7686067
  • 负责人:
  • 金额:
    $ 42.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Our current capacity to generate chemical and structural biological data far exceeds our capability to meaningfully assimilate it. The data describes molecules and biological macromolecules and associated properties. A principle common to the structure of all chemical and biological macromolecular entities is the composition of objects related by energetic interaction. A natural representation of all such entities is a graph composed of nodes related by edges. We have developed powerful, scalable techniques that operate on graph databases for efficient similarity searching (Closure-tree), identification of statistically significant subgraphs (GraphRank), and query specification (GraphQL). These techniques are naturally applied to chemical and structural biological data, which are naturally represented as graphs. We have demonstrated the validity of the approach in prior work, and the feasibility in our phase 1 research. The overall goal of this project is to deliver powerful innovative problem solving tools to medicinal chemists, structural biologists, and drug discovery researchers synthesizing ever increasing amounts of chemical, biochemical, structural biological, cell biological, and clinical data. Phase 1 of this project is ongoing and highly successful. We have successfully demonstrated that the Closure- tree and GraphRank algorithms are effective on chemical compound databases of realistic, industrial size. We have developed methods to exploit our knowledge of the nature of chemical databases. Using these methods we have improved similarity query performance time by over an order of magnitude. We have identified several specific aims to purse in Phase 2 of our research. We have rapidly established a professional software development and research infrastructure and developed the tools necessary to support progress toward the goal of solving important problems hindering medicinal chemists and structural biologists conducting modern drug discovery research for the development of new therapeutics. We will pursue four specific aims in our Phase 2 research. (1) We will develop specific additional functionality for Closure-tree and GraphRank, and integrate GraphQL into our chemical and structural bioinformatics tool set. The results of this aim will be used to (2) develop methods and functionality to represent chemical, structural biology, systems biology, and glycobiology data as graphs. Building on these results, we will (3) apply our tool set to specific relevant research problems such as HIV-1 Protease inhibition, Avian Flu neuraminidase inhibition, and p53-protein interactions. Finally, we will (4) assemble a state-of-the-art chemical and structural biological informatics tool set with detailed documentation and relevant case studies. The outcome of this research will be powerful, innovative new tools in the hands of medicinal chemists, structural biologists, and modern drug discovery researchers in academia and the pharmaceutical industry. The tools address significant obstacles in the drug development process and will enable new discoveries and greatly advance the practice of cheminformatic and structural biological data analysis. Through a carefully developed market analysis described in our commercialization plan, we show a growing market for our tools and competitive advantages. Application of our techniques will have significant impact on the interpretation of structural biological data, on pharmaceutical research and modern drug discovery chemistry, and on human health care through the design of new drugs. PUBLIC HEALTH RELEVANCE: Graph-based representation of chemical compounds results in a more accurate realization of the chemical space. The use of recent techniques in graph querying and mining will enable data analysis that can scale to millions of compounds. The developed system will integrate information on chemical compounds with biological activity and protein interaction networks, thus enabling cheaper and faster drug discovery.
描述(由申请人提供):我们目前生成化学和结构生物学数据的能力远远超过我们有意义地吸收它的能力。这些数据描述了分子和生物大分子以及相关性质。所有化学和生物大分子实体的结构的共同原理是通过能量相互作用相关的物体的组成。所有这些实体的自然表示是由边相关的节点组成的图。我们已经开发了强大的,可扩展的技术,在图形数据库上进行有效的相似性搜索(闭包树),识别统计上显着的子图(GraphRank)和查询规范(GraphQL)。这些技术自然地应用于化学和结构生物学数据,这些数据自然地表示为图表。我们已经证明了该方法在以前的工作中的有效性,并在我们的第一阶段研究的可行性。该项目的总体目标是为药物化学家,结构生物学家和药物发现研究人员提供强大的创新问题解决工具,以合成越来越多的化学,生物化学,结构生物学,细胞生物学和临床数据。该项目的第一阶段正在进行中,并且非常成功。我们已经成功地证明了闭包树和GraphRank算法在现实的工业规模的化合物数据库上是有效的。我们已经开发出利用我们对化学数据库性质的知识的方法。使用这些方法,我们已经提高了相似性查询的性能时间超过一个数量级。我们已经确定了几个具体的目标,以追求在我们的研究第二阶段。我们迅速建立了专业的软件开发和研究基础设施,并开发了必要的工具,以支持朝着解决阻碍药物化学家和结构生物学家进行现代药物发现研究以开发新疗法的重要问题的目标取得进展。我们将在第二阶段研究中实现四个具体目标。(1)我们将为Closure-tree和GraphRank开发特定的附加功能,并将GraphQL集成到我们的化学和结构生物信息学工具集中。该目标的结果将用于(2)开发方法和功能,以将化学,结构生物学,系统生物学和糖生物学数据表示为图表。基于这些结果,我们将(3)将我们的工具集应用于特定的相关研究问题,如HIV-1蛋白酶抑制,禽流感神经氨酸酶抑制和p53蛋白相互作用。最后,我们将(4)组装一个最先进的化学和结构生物信息学工具集,并提供详细的文档和相关的案例研究。这项研究的成果将成为药物化学家,结构生物学家以及学术界和制药行业的现代药物发现研究人员手中强大的创新工具。这些工具解决了药物开发过程中的重大障碍,将使新的发现和大大推进化学信息学和结构生物学数据分析的实践。通过在我们的商业化计划中描述的精心开发的市场分析,我们展示了我们的工具和竞争优势的不断增长的市场。我们的技术的应用将对结构生物学数据的解释,药物研究和现代药物发现化学以及通过新药设计对人类健康护理产生重大影响。公共卫生相关性:基于图形的化合物表示可以更准确地实现化学空间。在图查询和挖掘中使用最新技术将使数据分析能够扩展到数百万种化合物。该系统将整合化合物与生物活性和蛋白质相互作用网络的信息,从而实现更便宜,更快的药物发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Maxwell Lindstrom其他文献

William Maxwell Lindstrom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Maxwell Lindstrom', 18)}}的其他基金

Scalable tools for the analysis of chemical compounds using graph-based querying
使用基于图形的查询分析化合物的可扩展工具
  • 批准号:
    7539247
  • 财政年份:
    2007
  • 资助金额:
    $ 42.06万
  • 项目类别:
Scalable tools for the analysis of chemical compounds using graph-based querying
使用基于图形的查询分析化合物的可扩展工具
  • 批准号:
    7293378
  • 财政年份:
    2007
  • 资助金额:
    $ 42.06万
  • 项目类别:

相似海外基金

Conference: Rethinking how language background is described in academia and beyond
会议:重新思考学术界及其他领域如何描述语言背景
  • 批准号:
    2335912
  • 财政年份:
    2024
  • 资助金额:
    $ 42.06万
  • 项目类别:
    Standard Grant
ADVANCE Catalyst: Virtual Observatory of Culture for Equity in Academia at the University of Puerto Rico Rio Piedras (VoCEA)
ADVANCE Catalyst:波多黎各 Rio Piedras 大学学术界平等文化虚拟观察站 (VoCEA)
  • 批准号:
    2214418
  • 财政年份:
    2023
  • 资助金额:
    $ 42.06万
  • 项目类别:
    Standard Grant
Comprehensive development strategy of modality-specific "intellectual property" and "cultivation" with an eye on "pharmaceutical affairs" in academia drug discovery
学术界新药研发着眼“药事”的模式“知识产权”与“培育”综合发展策略
  • 批准号:
    23K02551
  • 财政年份:
    2023
  • 资助金额:
    $ 42.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accelerating Research Advancement for Investigators Underrepresented in Academia
加速学术界代表性不足的研究人员的研究进展
  • 批准号:
    10746315
  • 财政年份:
    2023
  • 资助金额:
    $ 42.06万
  • 项目类别:
Planning: HBCU-UP: Strengthening Data Science Research Capacity and Education Programs through Academia-Industry Partnership
规划:HBCU-UP:通过学术界与工业界合作加强数据科学研究能力和教育计划
  • 批准号:
    2332161
  • 财政年份:
    2023
  • 资助金额:
    $ 42.06万
  • 项目类别:
    Standard Grant
From Academia to Business: Development of Novel Therapeutics Against HPV-Associated Cancer
从学术界到商界:针对 HPV 相关癌症的新型疗法的开发
  • 批准号:
    10813323
  • 财政年份:
    2023
  • 资助金额:
    $ 42.06万
  • 项目类别:
Academics4Rail: Building a community of railway scientific researchers and academia for ERJU and enabling a network of PhDs (academia teaming with industry)
Academys4Rail:为ERJU建立铁路科研人员和学术界社区并建立博士网络(学术界与工业界合作)
  • 批准号:
    10087488
  • 财政年份:
    2023
  • 资助金额:
    $ 42.06万
  • 项目类别:
    EU-Funded
Academics4Rail: Building a Community of Railway Scientific Researchers and Academia for ERJU and Enabling a Network of PhDs (Academia Teaming with Industry)
Academys4Rail:为二院建立铁路科研人员和学术界社区并启用博士网络(学术界与工业界合作)
  • 批准号:
    10102850
  • 财政年份:
    2023
  • 资助金额:
    $ 42.06万
  • 项目类别:
    EU-Funded
Exploring the overall picture of industry-academia-government collaboration: A spectrum of knowledge transfer through formal and informal channels
探索产学官合作的整体图景:通过正式和非正式渠道进行的一系列知识转移
  • 批准号:
    22K01692
  • 财政年份:
    2022
  • 资助金额:
    $ 42.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fostering Ethical Neurotechnology Academia-Industry Partnerships: A Stakeholder Engagement and Toolkit Development Project
促进道德神经技术学术界与工业界的伙伴关系:利益相关者参与和工具包开发项目
  • 批准号:
    10655632
  • 财政年份:
    2022
  • 资助金额:
    $ 42.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了