Primary Research Project: Functional MRI

主要研究项目:功能性核磁共振成像

基本信息

  • 批准号:
    7892511
  • 负责人:
  • 金额:
    $ 23.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

Although there are several effective treatments for a major depressive episode, there are no reliable predictors of the likelihood of remission, response or non-response with an initial trial of either an antidepressant medication or psychotherapy. In prioritizing a role for direct measures of brain functioning in the development of new algorithms for clinical management of depressed patients, a systematic characterization of pretreatment patterns predictive of unambiguous remission to standard treatments is a necessary first step. This project will characterize imagingbased brain subtypes that distinguish groups of never-treated depressed patients who subsequently respond to pharmacotherapy or cognitive behavior therapy (CBT), respectively. A prospectively-treated cohort of 400 never-treated depressed patients randomized to receive either escitalopram, duloxetine or CBT for 1.2 weeks will define these subtypes. Resting-state BOLD functional magnetic resonance imaging (fMRI) scans will be acquired prior to initiating antidepressant therapy and at a fixed, early time point specific for each treatment. Pre-treatment scan patterns derived using multivariate analyses and associated with the six possible response outcomes (3 types of response; 3 types of nonresponse) will be used to determine whether pretreatment brain patterns can distinguish among outcome groups. A second fMRI scan, acquired early in the treatment course, will be used to assess the likelihood of response to the specific treatment assigned. The proposed studies are a first step towards defining brain-based subtypes predictive of differential treatment outcome in major depression. The data from these studies will also be entered into more complex algorithms integrating imaging findings with behavioral, environmental, biochemical and genetic information for individual patients.
虽然有几种有效的治疗重度抑郁发作的方法, 缓解、应答或无应答可能性的可靠预测因子, 抗抑郁药物或心理治疗。在优先考虑直接措施的作用时, 脑功能在抑郁症临床管理新算法的发展 患者,预处理模式的系统表征预测明确的 缓解到标准治疗是必要的第一步。该项目将以成像为基础 大脑亚型,区分从未接受治疗的抑郁症患者群体, 随后分别对药物治疗或认知行为治疗(CBT)有反应。一 400名从未接受过治疗的抑郁症患者随机接受以下治疗: 依他普仑、度洛沙坦或CBT治疗1.2周将确定这些亚型。静止状态BOLD 在开始之前,将采集功能性磁共振成像(fMRI)扫描 抗抑郁药治疗,并在每个治疗特定的固定的早期时间点。预处理 使用多变量分析导出的扫描模式,并与六种可能的响应相关联 结果(3种类型的响应; 3种类型的无响应)将用于确定是否 治疗前的大脑模式可以区分结果组。第二次功能磁共振扫描, 在治疗过程的早期获得的,将用于评估反应的可能性 指定的具体治疗。这些研究是定义基于大脑的 亚型预测重性抑郁症的不同治疗结果这些数据 研究还将进入更复杂的算法,将成像结果与 行为、环境、生化和遗传信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Helen S Mayberg其他文献

Posttraumatic Stress Disorder: A State-of-the-Science Review
创伤后应激障碍:最新科学回顾
  • DOI:
    10.1176/foc.7.2.foc254
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charles B. Nemeroff;J. Bremner;Edna B Foa;Helen S Mayberg;Carol S. North;Murray B. Stein
  • 通讯作者:
    Murray B. Stein
Support Vector Machine Classification of Resting State fMRI Datasets Using Dynamic Network Clusters
使用动态网络集群对静息态 fMRI 数据集进行支持向量机分类
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hyo Yul Byun;Helen S Mayberg
  • 通讯作者:
    Helen S Mayberg
The capacity of brain circuits to enhance psychiatry.
大脑回路增强精神病学的能力。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Dunlop;Helen S Mayberg
  • 通讯作者:
    Helen S Mayberg
Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic
针对情绪和焦虑障碍中的异常神经回路:从实验室到临床
  • DOI:
    10.1038/nn1944
  • 发表时间:
    2007-08-28
  • 期刊:
  • 影响因子:
    20.000
  • 作者:
    Kerry J Ressler;Helen S Mayberg
  • 通讯作者:
    Helen S Mayberg

Helen S Mayberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Helen S Mayberg', 18)}}的其他基金

Establishing the anatomical and functional mechanisms of white matter deep brain stimulation
建立白质深部脑刺激的解剖和功能机制
  • 批准号:
    10803745
  • 财政年份:
    2023
  • 资助金额:
    $ 23.26万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10604638
  • 财政年份:
    2022
  • 资助金额:
    $ 23.26万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10647096
  • 财政年份:
    2022
  • 资助金额:
    $ 23.26万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10310774
  • 财政年份:
    2021
  • 资助金额:
    $ 23.26万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    9929246
  • 财政年份:
    2019
  • 资助金额:
    $ 23.26万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    9869948
  • 财政年份:
    2017
  • 资助金额:
    $ 23.26万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10768061
  • 财政年份:
    2017
  • 资助金额:
    $ 23.26万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10545620
  • 财政年份:
    2017
  • 资助金额:
    $ 23.26万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10547822
  • 财政年份:
    2017
  • 资助金额:
    $ 23.26万
  • 项目类别:
Electrophysiological Biomarkers to Optimize DBS for Depression
电生理生物标志物优化 DBS 治疗抑郁症
  • 批准号:
    10767494
  • 财政年份:
    2017
  • 资助金额:
    $ 23.26万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.26万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 23.26万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 23.26万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 23.26万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 23.26万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.26万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 23.26万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 23.26万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 23.26万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 23.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了