Fast, High-Resolution Protein Separations using Controllable Electro-Osmotic Flow

使用可控电渗透流进行快速、高分辨率的蛋白质分离

基本信息

  • 批准号:
    7739628
  • 负责人:
  • 金额:
    $ 33.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The objective of this Phase I proposal is to demonstrate the performance of a novel microfluidic device that will improve by a factor of 100 upon the performance of traditional two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) used to separation of complex protein mixtures. Specific goals are to achieve a device peak capacity of 25,000 (compared to 3,000 for 2D-PAGE) and a cycle time of 1.5 hours (compared to 3 days for 2D-PAGE). The new device also improves by a factor ot ten on the peak capacities of existing 2D chromatography, capillary electrophoresis and microfluidic devices; the cycle time is roughly comparable. The new device is interfaced to ESI mass spectrometry, enabling it to determine top-down protein expression profiles. The proposed microfluidic device combines capillary isoelectric focusing (cIEF) with a single fast capillary zone electrophoresis (CZE). Careful attention is paid to reducing primary and secondary causes of resolution loss by suppressing electro-osmotic flow during focusing, preserving focused cIEF peak shapes when those peaks are mobilized, and careful coupling of cIEF with CZE. CZE flow rates are selected for large values. Separated proteins are then be removed through an ESI interface to a mass spectrometer. Proposal activities focus on demonstrating the key steps to demonstrate device feasibility. The device will be fabricated primarily at Arizona State University's Nanofab; process optimization will be used to create materials that are transparent and have other desirable physical properties. The device pores will be derivatized with high-density polyacrylamide to minimize protein adsorption. Performance of cIEF and CZE separations will be quantified using reference protein mixtures over a range of system operating conditions. Focused or separated proteins will further be mobilized from their separation regions to determine how peaks spread during device coupling. 2D separations will be studied, from known proteins mixtures to an E. coli lysate extract. Finally, device performance is verified by combining it with ESI mass spec. The device should find broad application to target discovery, determining the mechanism and progression of human disease, finding the activity of pharmaceutical compounds to known targets or the toxicity of these compounds to human organs, and identifying protein diagnostic markers. PUBLIC HEALTH RELEVANCE: Determining what proteins a cell or tissue expresses is a powerful complement to DNA analysis. Many human diseases are caused when abnormal proteins are produced, including enzymes, antibodies and hormones, and measuring these abnormal proteins directly is extremely helpful to their diagnosis and to creating of new pharmaceuticals. The tools developed in this proposal will determine and quantify with great precision and speed the proteins that are expressed in a format that is convenient to use. Its performance will improve on the current best technology by increasing by ten times the number of proteins that can be determined from one experiment, and reduce the analysis time by a factor of ten. The new tools should find broad application to target discovery, determining the mechanism and progression of human disease, finding the activity of pharmaceutical compounds to known targets or the toxicity of these compounds to human organs, and identifying protein diagnostic markers.
描述(由申请人提供):本I期提案的目的是展示一种新型微流控装置的性能,该装置将在用于分离复杂蛋白质混合物的传统二维聚丙烯酰胺凝胶电泳(2D-PAGE)的性能基础上提高100倍。具体目标是实现设备峰值容量25,000(与2D-PAGE的3,000相比)和循环时间1.5小时(与2D-PAGE的3天相比)。新装置还将现有的二维色谱、毛细管电泳和微流体装置的峰值容量提高了10倍;周期时间大致相当。新设备与ESI质谱连接,使其能够确定自上而下的蛋白质表达谱。该微流控装置结合了毛细管等电聚焦(cIEF)和单一快速毛细管区带电泳(CZE)。通过抑制聚焦过程中的电渗透流,保持聚焦后的cIEF峰的形状,以及cIEF与CZE的耦合,可以减少主要和次要的分辨率损失原因。对于较大的值,选择CZE流量。然后通过ESI界面将分离的蛋白质移至质谱仪。提案活动侧重于演示演示设备可行性的关键步骤。该装置将主要在亚利桑那州立大学的纳米实验室制造;过程优化将用于创造透明的材料,并具有其他理想的物理特性。该装置孔将与高密度聚丙烯酰胺衍生,以尽量减少蛋白质吸附。cIEF和CZE分离的性能将在一系列系统操作条件下使用参考蛋白混合物进行量化。聚焦或分离的蛋白质将进一步从其分离区域动员,以确定在器件耦合期间峰如何扩散。2D分离将被研究,从已知的蛋白质混合物到大肠杆菌裂解物提取物。最后,通过将其与ESI质谱相结合来验证设备的性能。该设备应该在靶点发现,确定人类疾病的机制和进展,发现药物化合物对已知靶点的活性或这些化合物对人体器官的毒性以及识别蛋白质诊断标记物方面具有广泛的应用。公共卫生相关性:确定细胞或组织表达的蛋白质是对DNA分析的有力补充。许多人类疾病都是在产生异常蛋白质时引起的,包括酶、抗体和激素,直接测量这些异常蛋白质对疾病的诊断和新药的开发非常有帮助。本提案中开发的工具将以非常精确的速度确定和量化以方便使用的格式表达的蛋白质。它的性能将在目前最好的技术的基础上得到改进,通过一次实验可以确定的蛋白质数量增加十倍,并将分析时间减少十倍。新工具应广泛应用于发现靶点,确定人类疾病的机制和进展,发现药物化合物对已知靶点的活性或这些化合物对人体器官的毒性,以及鉴定蛋白质诊断标记物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frank Jahnke其他文献

Frank Jahnke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frank Jahnke', 18)}}的其他基金

A New Sample Preparation Method to Delve Deeper into the Proteome
一种深入研究蛋白质组的新样品制备方法
  • 批准号:
    9094237
  • 财政年份:
    2016
  • 资助金额:
    $ 33.1万
  • 项目类别:
Mining Complex Human Fluids for New Potential Protein Biomarkers
挖掘复杂的人体液体以寻找新的潜在蛋白质生物标志物
  • 批准号:
    9049033
  • 财政年份:
    2015
  • 资助金额:
    $ 33.1万
  • 项目类别:
Sample Pretreatment for Human Fluids
人体体液样品预处理
  • 批准号:
    8715324
  • 财政年份:
    2014
  • 资助金额:
    $ 33.1万
  • 项目类别:
Fast, High-Resolution Protein Separations using Controllable Electro-Osmotic Flow
使用可控电渗透流进行快速、高分辨率的蛋白质分离
  • 批准号:
    7910559
  • 财政年份:
    2009
  • 资助金额:
    $ 33.1万
  • 项目类别:

相似海外基金

Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Research Grant
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
  • 批准号:
    2901619
  • 财政年份:
    2024
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Studentship
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
  • 批准号:
    2871817
  • 财政年份:
    2024
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
  • 批准号:
    23H02303
  • 财政年份:
    2023
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
  • 批准号:
    2303933
  • 财政年份:
    2023
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
  • 批准号:
    23H05448
  • 财政年份:
    2023
  • 资助金额:
    $ 33.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了