Self-microencapsulation in polymer delivery systems without organic solvents

不含有机溶剂的聚合物输送系统中的自微囊化

基本信息

项目摘要

DESCRIPTION (provided by applicant): Our ultimate goal is to develop a new and simple method to microencapsulate drugs and other bioactive substances, particularly biomacromolecules such as proteins and peptides, in biodegradable controlled-release polymers. Current methods of microencapsulation in polymers such as poly(lactic-co-glycolic acid) (PLGA) suffer from: a) protein instability including use of protein-denaturing organic solvents, b) expensive large-scale, aseptic processing for encapsulation of each peptide/protein of interest, and c) the inability of clinicians at the point-of-care or other non formulation scientists in the field to effectively perform encapsulation. We will exploit our novel finding of spontaneous PLGA pore closing to microencapsulate proteins and peptides by: creating polymer delivery systems with defined pore networks, placing the polymers in the presence of an aqueous drug solution of interest, and then causing the pore network to close, e.g., by simple heating to physiological temperature. Unlike the vast majority of microencapsulation methodologies, which place drug in contact with dissolved polymer before or during microencapsulation, this approach creates a new paradigm in microencapsulation, whereby the biomaterial system is initially created and then microencapsulation is performed at the very end of preparation. In a sense, the polymer pore network microencapsulates by "itself" spontaneously-hence the term, "self-microencapsulation." Moreover, microencapsulation a) takes place under nondenaturing conditions without the need for organic solvent, b) could be done inexpensively with terminally sterilized porous PLGA microspheres for multiple peptides and/or proteins, c) would be applicable to numerous polymer configurations and geometries such as microspheres, nanospheres, tissue engineering scaffolds, drug-eluting stents, and d) could be performed by clinicians and investigators in the field, since encapsulation is by simple aseptic mixing of protein and polymer. This proposal will test the hypothesis that PLGA microspheres entrapping high loading of protein or peptide drugs can be prepared reproducibly by self-microencapsulation, and the resulting polymer will exhibit excellent drug stability and release performance both in vitro and in vivo. This hypothesis will be tested in 3 specific aims: 1) determine the effect of formulation variables on self- microencapsulation of model proteins, 2) investigate the mechanism of spontaneous pore closing in aqueous media, and 3) test the feasibility of self-encapsulation to stabilize and control the release of therapeutic peptides and proteins in vitro and in vivo. PUBLIC HEALTH RELEVANCE: This project tests the feasibility of a brand new method of microencapsulation based on a recent finding from our group demonstrating how biodegradable polymers can heal their tiny holes and cracks spontaneously in water. The microencapsulation method does not use organic solvents and could have far reaching applications to the slow delivery of the important biomacromolecular class of drugs and vaccine antigens from injectable depots, tissue engineering scaffolds, and drug-eluting stents.
描述(由申请人提供):我们的最终目标是开发一种新的和简单的方法,以微胶囊化药物和其他生物活性物质,特别是生物大分子,如蛋白质和肽,在可生物降解的控释聚合物。目前在聚合物如聚(乳酸-共-乙醇酸)(PLGA)中微囊化的方法存在以下问题:a)蛋白质不稳定性,包括使用蛋白质变性有机溶剂,B)用于囊化每种感兴趣的肽/蛋白质的昂贵的大规模无菌处理,和c)护理点的临床医生或该领域的其他非制剂科学家不能有效地进行囊化。我们将利用我们的新发现,即PLGA孔自发闭合以微囊化蛋白质和肽,通过:创建具有限定孔网络的聚合物递送系统,将聚合物置于感兴趣的药物水溶液存在下,然后使孔网络闭合,例如,通过简单加热到生理温度。与绝大多数微胶囊化方法不同,这些方法在微胶囊化之前或期间将药物与溶解的聚合物接触,这种方法在微胶囊化中创造了一种新的范例,由此最初创建生物材料系统,然后在制备的最后进行微胶囊化。在某种意义上,聚合物孔网络通过“自身”自发地进行微胶囊化,因此称为“自微胶囊化”。“此外,微囊化a)在非变性条件下发生而不需要有机溶剂,B)可以用用于多种肽和/或蛋白质的最终灭菌的多孔PLGA微球廉价地完成,c)将适用于许多聚合物构型和几何形状,例如微球、纳米球、组织工程支架、药物洗脱支架,和d)可以由临床医生和研究者在本领域中进行,因为包封是通过蛋白质和聚合物的简单无菌混合进行的。该方案将验证这样的假设,即包埋高负载的蛋白质或肽类药物的PLGA微球可以通过自微囊化可重复地制备,并且所得聚合物将在体外和体内表现出优异的药物稳定性和释放性能。该假设将在3个具体目的中进行测试:1)确定制剂变量对模型蛋白质的自微囊化的影响,2)研究水性介质中自发孔闭合的机制,和3)测试自囊化以在体外和体内稳定和控制治疗性肽和蛋白质的释放的可行性。 公共卫生关系:该项目测试了一种全新的微胶囊化方法的可行性,该方法基于我们小组最近的一项发现,该发现展示了可生物降解的聚合物如何在水中自发地修复其微小的孔和裂缝。微囊化方法不使用有机溶剂,并且可以具有从可注射储库、组织工程支架和药物洗脱支架缓慢递送重要的生物大分子类药物和疫苗抗原的深远应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEVEN P. SCHWENDEMAN其他文献

STEVEN P. SCHWENDEMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEVEN P. SCHWENDEMAN', 18)}}的其他基金

Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
  • 批准号:
    10186743
  • 财政年份:
    2020
  • 资助金额:
    $ 22.72万
  • 项目类别:
Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
  • 批准号:
    10377507
  • 财政年份:
    2020
  • 资助金额:
    $ 22.72万
  • 项目类别:
Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
  • 批准号:
    10590662
  • 财政年份:
    2020
  • 资助金额:
    $ 22.72万
  • 项目类别:
Controlled Photo-Release of Nitric Oxide for Antimicrobial Inhalation Therapy
用于抗菌吸入疗法的一氧化氮的受控光释放
  • 批准号:
    9298198
  • 财政年份:
    2017
  • 资助金额:
    $ 22.72万
  • 项目类别:
Investigation of peptide-polymer interactions in PLGA microspheres
PLGA 微球中肽-聚合物相互作用的研究
  • 批准号:
    9346576
  • 财政年份:
    2016
  • 资助金额:
    $ 22.72万
  • 项目类别:
In vitro-In vivo correlations of parenteral microsphere drug products
肠外微球药物产品的体外-体内相关性
  • 批准号:
    9131455
  • 财政年份:
    2013
  • 资助金额:
    $ 22.72万
  • 项目类别:
In vitro-In vivo correlations of parenteral microsphere drug products
肠外微球药物产品的体外-体内相关性
  • 批准号:
    8670377
  • 财政年份:
    2013
  • 资助金额:
    $ 22.72万
  • 项目类别:
Protein Stability in Polymer Delivery Systems
聚合物输送系统中的蛋白质稳定性
  • 批准号:
    7844194
  • 财政年份:
    2009
  • 资助金额:
    $ 22.72万
  • 项目类别:
Self-microencapsulation in polymer delivery systems without organic solvents
不含有机溶剂的聚合物输送系统中的自微囊化
  • 批准号:
    7894812
  • 财政年份:
    2009
  • 资助金额:
    $ 22.72万
  • 项目类别:
Protein Stability in Polymer Delivery Systems
聚合物输送系统中的蛋白质稳定性
  • 批准号:
    6629146
  • 财政年份:
    2001
  • 资助金额:
    $ 22.72万
  • 项目类别:

相似海外基金

Photoresponsive, biocompatible materials for reconfigurable intraocular lenses
用于可重构人工晶状体的光响应、生物相容性材料
  • 批准号:
    DH-2022-00249
  • 财政年份:
    2022
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Discovery Horizons
Telemetric mouthguard sensor system with biocompatible materials and MEMS techniques for unconstrained human assessment
采用生物相容性材料和 MEMS 技术的遥测护牙套传感器系统,可实现不受约束的人体评估
  • 批准号:
    19KK0259
  • 财政年份:
    2019
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Development of Ion-sensing Membranes Modified Chemically with Biocompatible Materials for Analysis of Biological Samples
开发用于生物样品分析的生物相容性材料化学修饰的离子传感膜
  • 批准号:
    18K05172
  • 财政年份:
    2018
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The use of 3D printing techniques in the preparation of biocompatible materials
3D打印技术在生物相容性材料制备中的应用
  • 批准号:
    1942009
  • 财政年份:
    2017
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Studentship
Human periodontal ligament cell adhesions on biocompatible materials
人牙周膜细胞在生物相容性材料上的粘附
  • 批准号:
    26670892
  • 财政年份:
    2014
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Construction and usage of a mouse or human synthetic lymphoid tissue using biocompatible materials.
使用生物相容性材料构建和使用小鼠或人类合成淋巴组织。
  • 批准号:
    16590408
  • 财政年份:
    2004
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DESIGN AND IMPLEMENTATION OF NEW BIOCOMPATIBLE MATERIALS
新型生物相容性材料的设计与实现
  • 批准号:
    6178836
  • 财政年份:
    2000
  • 资助金额:
    $ 22.72万
  • 项目类别:
DESIGN AND IMPLEMENTATION OF NEW BIOCOMPATIBLE MATERIALS
新型生物相容性材料的设计与实现
  • 批准号:
    2708568
  • 财政年份:
    1999
  • 资助金额:
    $ 22.72万
  • 项目类别:
DESIGN AND IMPLEMENTATION OF NEW BIOCOMPATIBLE MATERIALS
新型生物相容性材料的设计与实现
  • 批准号:
    6018399
  • 财政年份:
    1999
  • 资助金额:
    $ 22.72万
  • 项目类别:
Synthesis of Biocompatible Materials Having Blood-Group Antigenic 01 igosaccharide Chain
具有血型抗原01寡糖链的生物相容性材料的合成
  • 批准号:
    02650662
  • 财政年份:
    1990
  • 资助金额:
    $ 22.72万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了