Self-microencapsulation in polymer delivery systems without organic solvents
不含有机溶剂的聚合物输送系统中的自微囊化
基本信息
- 批准号:7739678
- 负责人:
- 金额:$ 22.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsBiocompatible MaterialsBovine Serum AlbuminCoumarinsDrug Delivery SystemsDrug FormulationsDrug StabilityEncapsulatedEvaluationExhibitsFigs - dietaryGlycolatesGoalsHealedHeatingHindlimbHydration statusIn VitroIncubatedInjectableLabelLeuprolideLeuprolide AcetateMethodologyMethodsMicroencapsulationsMicrospheresModelingMolecular ConformationMusNanosphereOrganic solvent productPeptidesPerformancePharmaceutical PreparationsPhysiologicalPolymersPreparationProcessProteinsRattusResearchResearch PersonnelRouteScientistSolutionsSolventsStentsSwellingSystemTemperatureTestingTestosteroneTherapeuticTissue EngineeringVaccine AntigenVascular Endothelial Growth FactorsWateralpha benzopyroneaqueousbasebiodegradable polymerbiomaterial preparationclinically relevantcontrolled releaseevaporationhealingin vivointerestinterfacialnovelpoint of carepreventpublic health relevancescaffoldseal
项目摘要
DESCRIPTION (provided by applicant): Our ultimate goal is to develop a new and simple method to microencapsulate drugs and other bioactive substances, particularly biomacromolecules such as proteins and peptides, in biodegradable controlled-release polymers. Current methods of microencapsulation in polymers such as poly(lactic-co-glycolic acid) (PLGA) suffer from: a) protein instability including use of protein-denaturing organic solvents, b) expensive large-scale, aseptic processing for encapsulation of each peptide/protein of interest, and c) the inability of clinicians at the point-of-care or other non formulation scientists in the field to effectively perform encapsulation. We will exploit our novel finding of spontaneous PLGA pore closing to microencapsulate proteins and peptides by: creating polymer delivery systems with defined pore networks, placing the polymers in the presence of an aqueous drug solution of interest, and then causing the pore network to close, e.g., by simple heating to physiological temperature. Unlike the vast majority of microencapsulation methodologies, which place drug in contact with dissolved polymer before or during microencapsulation, this approach creates a new paradigm in microencapsulation, whereby the biomaterial system is initially created and then microencapsulation is performed at the very end of preparation. In a sense, the polymer pore network microencapsulates by "itself" spontaneously-hence the term, "self-microencapsulation." Moreover, microencapsulation a) takes place under nondenaturing conditions without the need for organic solvent, b) could be done inexpensively with terminally sterilized porous PLGA microspheres for multiple peptides and/or proteins, c) would be applicable to numerous polymer configurations and geometries such as microspheres, nanospheres, tissue engineering scaffolds, drug-eluting stents, and d) could be performed by clinicians and investigators in the field, since encapsulation is by simple aseptic mixing of protein and polymer. This proposal will test the hypothesis that PLGA microspheres entrapping high loading of protein or peptide drugs can be prepared reproducibly by self-microencapsulation, and the resulting polymer will exhibit excellent drug stability and release performance both in vitro and in vivo. This hypothesis will be tested in 3 specific aims: 1) determine the effect of formulation variables on self- microencapsulation of model proteins, 2) investigate the mechanism of spontaneous pore closing in aqueous media, and 3) test the feasibility of self-encapsulation to stabilize and control the release of therapeutic peptides and proteins in vitro and in vivo.
PUBLIC HEALTH RELEVANCE: This project tests the feasibility of a brand new method of microencapsulation based on a recent finding from our group demonstrating how biodegradable polymers can heal their tiny holes and cracks spontaneously in water. The microencapsulation method does not use organic solvents and could have far reaching applications to the slow delivery of the important biomacromolecular class of drugs and vaccine antigens from injectable depots, tissue engineering scaffolds, and drug-eluting stents.
描述(申请人提供):我们的最终目标是开发一种新的、简单的方法,将药物和其他生物活性物质,特别是生物大分子,如蛋白质和多肽,微胶囊到可生物降解的控释聚合物中。目前聚合物中微胶囊的方法,如聚(乳酸-乙醇酸)(PLGA),存在以下问题:a)蛋白质不稳定,包括使用蛋白质变性的有机溶剂;b)昂贵的大规模、无菌工艺,用于包裹每个感兴趣的多肽/蛋白质;以及c)临床医生或该领域的其他非处方科学家无法有效地进行包裹。我们将通过以下方式利用我们的新发现:创建具有定义的孔网络的聚合物递送系统,将聚合物放置在感兴趣的药物水溶液中,然后通过简单加热到生理温度来使孔网络关闭。与绝大多数微胶囊方法不同的是,在微胶囊之前或微胶囊期间,药物与溶解的聚合物接触,这种方法在微胶囊中创造了一种新的范式,即最初创建生物材料系统,然后在制备的最后进行微胶囊。从某种意义上说,聚合物孔网络通过“自身”自发地形成微胶囊--因此有了“自我微胶囊”这个术语。此外,a)在非变性条件下进行微胶囊化而不需要有机溶剂,b)可以廉价地使用末端灭菌的多肽和/或蛋白质的多孔PLGA微球,c)将适用于多种聚合物构型和几何形状,例如微球、纳米球、组织工程支架、药物洗脱支架,以及d)可以由临床医生和该领域的研究人员进行,因为包囊是通过蛋白质和聚合物的简单无菌混合来进行的。这项提议将验证这样的假设,即通过自微胶囊可以重复地制备高负载蛋白质或多肽药物的PLGA微球,所得到的聚合物在体内外都将表现出良好的药物稳定性和释放性能。这一假设将在3个方面得到验证:1)确定处方变量对模型蛋白质自微胶囊的影响,2)研究水介质中自发闭孔的机制,3)测试自胶囊在体内外稳定和控制治疗性多肽和蛋白质释放的可行性。
与公共健康相关:该项目测试了一种全新的微胶囊方法的可行性,该方法基于我们团队最近的一项发现,展示了可生物降解的聚合物如何能够自发修复水中的微小孔洞和裂缝。这种微胶囊化方法不使用有机溶剂,在从注射库、组织工程支架和药物洗脱支架缓慢输送重要的生物大分子类药物和疫苗抗原方面可能有广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN P. SCHWENDEMAN其他文献
STEVEN P. SCHWENDEMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN P. SCHWENDEMAN', 18)}}的其他基金
Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
- 批准号:
10186743 - 财政年份:2020
- 资助金额:
$ 22.72万 - 项目类别:
Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
- 批准号:
10377507 - 财政年份:2020
- 资助金额:
$ 22.72万 - 项目类别:
Controlled Photochemical Release of Nitric Oxide for Biomedical Applications
用于生物医学应用的一氧化氮的受控光化学释放
- 批准号:
10590662 - 财政年份:2020
- 资助金额:
$ 22.72万 - 项目类别:
Controlled Photo-Release of Nitric Oxide for Antimicrobial Inhalation Therapy
用于抗菌吸入疗法的一氧化氮的受控光释放
- 批准号:
9298198 - 财政年份:2017
- 资助金额:
$ 22.72万 - 项目类别:
Investigation of peptide-polymer interactions in PLGA microspheres
PLGA 微球中肽-聚合物相互作用的研究
- 批准号:
9346576 - 财政年份:2016
- 资助金额:
$ 22.72万 - 项目类别:
In vitro-In vivo correlations of parenteral microsphere drug products
肠外微球药物产品的体外-体内相关性
- 批准号:
9131455 - 财政年份:2013
- 资助金额:
$ 22.72万 - 项目类别:
In vitro-In vivo correlations of parenteral microsphere drug products
肠外微球药物产品的体外-体内相关性
- 批准号:
8670377 - 财政年份:2013
- 资助金额:
$ 22.72万 - 项目类别:
Protein Stability in Polymer Delivery Systems
聚合物输送系统中的蛋白质稳定性
- 批准号:
7844194 - 财政年份:2009
- 资助金额:
$ 22.72万 - 项目类别:
Self-microencapsulation in polymer delivery systems without organic solvents
不含有机溶剂的聚合物输送系统中的自微囊化
- 批准号:
7894812 - 财政年份:2009
- 资助金额:
$ 22.72万 - 项目类别:
Protein Stability in Polymer Delivery Systems
聚合物输送系统中的蛋白质稳定性
- 批准号:
6629146 - 财政年份:2001
- 资助金额:
$ 22.72万 - 项目类别:
相似海外基金
Photoresponsive, biocompatible materials for reconfigurable intraocular lenses
用于可重构人工晶状体的光响应、生物相容性材料
- 批准号:
DH-2022-00249 - 财政年份:2022
- 资助金额:
$ 22.72万 - 项目类别:
Discovery Horizons
Telemetric mouthguard sensor system with biocompatible materials and MEMS techniques for unconstrained human assessment
采用生物相容性材料和 MEMS 技术的遥测护牙套传感器系统,可实现不受约束的人体评估
- 批准号:
19KK0259 - 财政年份:2019
- 资助金额:
$ 22.72万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Development of Ion-sensing Membranes Modified Chemically with Biocompatible Materials for Analysis of Biological Samples
开发用于生物样品分析的生物相容性材料化学修饰的离子传感膜
- 批准号:
18K05172 - 财政年份:2018
- 资助金额:
$ 22.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The use of 3D printing techniques in the preparation of biocompatible materials
3D打印技术在生物相容性材料制备中的应用
- 批准号:
1942009 - 财政年份:2017
- 资助金额:
$ 22.72万 - 项目类别:
Studentship
Human periodontal ligament cell adhesions on biocompatible materials
人牙周膜细胞在生物相容性材料上的粘附
- 批准号:
26670892 - 财政年份:2014
- 资助金额:
$ 22.72万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Construction and usage of a mouse or human synthetic lymphoid tissue using biocompatible materials.
使用生物相容性材料构建和使用小鼠或人类合成淋巴组织。
- 批准号:
16590408 - 财政年份:2004
- 资助金额:
$ 22.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DESIGN AND IMPLEMENTATION OF NEW BIOCOMPATIBLE MATERIALS
新型生物相容性材料的设计与实现
- 批准号:
6178836 - 财政年份:2000
- 资助金额:
$ 22.72万 - 项目类别:
DESIGN AND IMPLEMENTATION OF NEW BIOCOMPATIBLE MATERIALS
新型生物相容性材料的设计与实现
- 批准号:
2708568 - 财政年份:1999
- 资助金额:
$ 22.72万 - 项目类别:
DESIGN AND IMPLEMENTATION OF NEW BIOCOMPATIBLE MATERIALS
新型生物相容性材料的设计与实现
- 批准号:
6018399 - 财政年份:1999
- 资助金额:
$ 22.72万 - 项目类别:
Synthesis of Biocompatible Materials Having Blood-Group Antigenic 01 igosaccharide Chain
具有血型抗原01寡糖链的生物相容性材料的合成
- 批准号:
02650662 - 财政年份:1990
- 资助金额:
$ 22.72万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




