PARTICLE ESTIMATION FOR ELECTRON TOMOGRAPHY
电子断层扫描的粒子估计
基本信息
- 批准号:7722835
- 负责人:
- 金额:$ 2.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsCellsCharacteristicsCollectionComputer Retrieval of Information on Scientific Projects DatabaseComputer softwareDataElectron BeamElectron MicroscopyFreezingFundingGrantHourImageIn SituInstitutionLocationMeasurementNoiseNumbersPlasticsProceduresRangeResearchResearch PersonnelResolutionResourcesRotationSamplingSignal TransductionSourceSpecimenStructureTechniquesTimeTomogramTranslationsTreesUnited States National Institutes of HealthUpdateVariantbasecomputer networkdayelectron tomographyimprovedinterestparticleresearch studythree dimensional structure
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Electron tomography (ET) of plastic sections is limited in quality by the low signal-to-noise ratio (SNR) of the data. This problem is even greater for ET of frozen-hydrated samples (cryo ET) because they have low contrast and are very sensitive to damage by the electron beam. SNR for all EM samples is typically a decreasing function of resolution one is trying to achieve, severely limiting the amount of structural detail that is accessible in a tomogram. For specimens containing multiple copies of a given structure, we have developed an algorithm to improve the SNR by estimating the true 3D structure that is present in the cell, based on the images of multiple copies of the same structure that are often visible in a tomogram. Our technique builds on the approach developed for single-particle electron microscopy, with the primary difference that alignment and averaging occur over the 3D tomographic volume. The advantage of this approach is that the structure of interest can be studied in situ instead of having to be isolated from its cellular context.
Our algorithm for estimating the true 3D particle structure is as follows. Using manually selected particle locations within the tomogram, a sub volume containing each particle is excised and then aligned rotationally by explicitly comparing each sub volume with a reference volume over a range of discrete Euler rotations. Sub volume comparison is typically computed using a Fourier domain local correlation coefficient sequence function, which also provides the optimal translational shift for each rotation. The reference volume can be chosen from the collection of particles, or an unbiased reference can be generated by a pair-wise binary tree alignment of a subset of particles. This alignment procedure is typically iterated, reducing the rotational search space and granularity, and allowing an update of the reference volume at each iteration. Once we have rotation and translation estimates for each particle we estimate the particle volume by averaging the aligned sub volumes. We compensate for the wedge of missing data that is characteristic of single-axis tilting ET by accounting for the Fourier component contribution, or lack thereof, from each particle as it is transformed into alignment with the reference. Qualitatively, our particle estimation algorithm allows us to visualize structural details that are not visible in the original tomogram. Quantitatively, the spectral-signal-to-noise ratio measurements show SNR improvements close to that expected for the number of particles averaged.
During the recent past, we have added 2 functions to this software: the ability to average particles from multiple tomograms and the ability to distribute the search for optimal alignment across a network of computers. Experiments have shown that the missing wedge is better accounted for in the final average with the result that particles with more orientational variations can be added. The computation time has also been cut from a few days to a few hours.
这个子项目是许多研究子项目中利用
资源由NIH/NCRR资助的中心拨款提供。子项目和
调查员(PI)可能从NIH的另一个来源获得了主要资金,
并因此可以在其他清晰的条目中表示。列出的机构是
该中心不一定是调查人员的机构。
塑料切片的电子断层成像(ET)质量受到数据的低信噪比(SNR)的限制。这个问题对于冷冻水合样品的ET(低温ET)来说更严重,因为它们对比度低,对电子束的破坏非常敏感。所有EM样本的SNR通常是试图达到的分辨率的递减函数,严重限制了层析图像中可访问的结构细节的数量。对于包含给定结构的多个副本的标本,我们开发了一种算法,通过基于通常在断层图像中可见的相同结构的多个副本的图像来估计细胞中存在的真实3D结构,从而提高SNR。我们的技术建立在为单粒子电子显微镜开发的方法上,主要区别是对齐和平均发生在3D断层体积上。这种方法的优点是可以在现场研究感兴趣的结构,而不是必须从细胞环境中分离出来。
我们估计真实3D粒子结构的算法如下。使用断层图像内人工选择的颗粒位置,切除包含每个颗粒的子体积,然后通过明确地将每个子体积与离散欧拉旋转范围内的参考体积进行比较来旋转对准。子体积比较通常使用傅里叶域局部相关系数序列函数来计算,该序列函数还提供每次旋转的最佳平移。可以从粒子集合中选择参考体积,或者可以通过粒子子集的成对二叉树比对来生成无偏参考。该对准过程通常是迭代的,减少了旋转搜索空间和粒度,并允许在每次迭代时更新参考体积。一旦我们有了每个粒子的旋转和平移估计,我们就通过平均排列的子体积来估计粒子体积。我们通过考虑每个粒子在转换为与参考对准时的傅立叶分量贡献或缺少来补偿作为单轴倾斜ET特征的缺失数据的楔形。定性上,我们的粒子估计算法允许我们可视化原始断层图中看不到的结构细节。在定量方面,光谱信噪比测量显示,SNR改善接近平均粒子数量的预期。
在最近的过去,我们给这个软件增加了两个功能:从多个断层图像中平均颗粒的能力,以及在整个计算机网络中分配搜索最佳比对的能力。实验表明,在最终平均值中更好地解释了缺失的楔形,结果是可以添加具有更多取向变化的粒子。计算时间也从几天减少到几个小时。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
QUANREN XIONG其他文献
QUANREN XIONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('QUANREN XIONG', 18)}}的其他基金
CONTRAST TRANSFER FUNCTION (CTF) CORRECTION FOR ELECTRON TOMOGRAPHY
电子断层扫描的对比度传递函数 (CTF) 校正
- 批准号:
7722847 - 财政年份:2008
- 资助金额:
$ 2.76万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 2.76万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 2.76万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 2.76万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 2.76万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 2.76万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 2.76万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 2.76万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 2.76万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 2.76万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 2.76万 - 项目类别:
Continuing Grant