CONTRAST TRANSFER FUNCTION (CTF) CORRECTION FOR ELECTRON TOMOGRAPHY
电子断层扫描的对比度传递函数 (CTF) 校正
基本信息
- 批准号:7722847
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsComputer Retrieval of Information on Scientific Projects DatabaseDoseFrequenciesFundingGrantHeightImageInstitutionMethodsMicroscopeNoiseOpticsPhaseProteinsRangeReportingResearchResearch PersonnelResolutionResourcesSeriesSignal TransductionSourceStagingTomogramUnited States National Institutes of HealthVariantWritingcharge coupled device cameraelectron tomographyimprovedparticleprogramsquantumresearch study
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
With conventional optics (i.e., in the absence of a phase plate), image contrast in low dose cryo-ET is mainly achieved by defocusing the microscope significantly, typically by 3-8 microns. This large defocus shifts the first zero of the CTF to a much lower spatial frequency, and as a result the acquired tomogram does not have directly usable information beyond about 3-4 nm resolution due to phase inversion after the first zero. CTF correction is one of several complementary approaches to achieve 2-3 nm resolution in cryotomograms.
We have developed a GUI program that can robustly determine the center defocus (thus the first zero of CTF) for a subset of views from a tilt series. Our method computes the 1D power spectrum of the images using periodogram averaging and then subtracts from it the quantum noise power spectrum of the microscope and CCD camera. To improve the signal to noise ratio, power spectra from strips at different Z heights are shifted into approximate registration with those from the center of the tilted images. The user interactively sets limits for fitting curves before and after the first zero, and those limits can then be applied when analyzing different subsets of views through the range of tilt angles. Experiments show that the computed defocus agrees well with the defocus reported by the SerialEM program, on both our F20 and F30 microscopes.
A second program was written to reverse the phase inversion after the first zero of CTF in the center is determined. The correction method takes into account the defocus gradient along the direction perpendicular to the tilt axis. It tessellates an image into strips parallel to the tilt axis so that defocus variation within a strip is small comparing with the defocus. Then it corrects the strip assuming a constant defocus that is computed from the tilt geometry.
At this stage we still can not quantify the resolution gain due to CTF correction. The plan is to first validate our correction algorithm using images from some known crystal protein, then apply it to our tomograms to see how much it can improve the final result of our particle averaging program.
这个子项目是众多研究子项目之一
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
QUANREN XIONG其他文献
QUANREN XIONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('QUANREN XIONG', 18)}}的其他基金
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Research Grant