Bayesian Methods for a Longitudinal CAT

纵向 CAT 的贝叶斯方法

基本信息

  • 批准号:
    7640794
  • 负责人:
  • 金额:
    $ 13.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): My goal is to be a quantitative methodologist focusing in behavioral science applications. Specifically I am interested in using computerized adaptive testing (CAT) to improve longitudinal measurement of patient reported health outcomes important in cancer prevention and cancer control, such as depressive symptoms. In order to get precise measurement of patient-reported health outcomes, self-report surveys tend to be long and create a moderate-to-high level of respondent burden. CAT is a more efficient measurement tool than most current scales and reduces response burden while simultaneously increasing precision. I propose to improve longitudinal assessment by first improving CAT methodology to achieve even higher gains, and then to develop CAT measurement instruments for longitudinal measurement of patient-reported health outcomes. This career development award will build upon my previous training in statistical science and give me further training in cutting edge Bayesian statistical methods and patient reported health outcomes research. I have assembled a mentoring team of two statisticians, a psychometrician, a quality of life researcher, and one of the leaders in developing computerized adaptive tests (CAT) for measuring patient reported health outcomes. My research proposal focuses on developing methodological enhancements to current CAT algorithms, and developing new algorithms to further reduce respondent burden in longitudinal assessments of patient reported health outcomes in behavioral cancer prevention and cancer control studies. I hypothesize that tailoring CAT algorithms to longitudinal assessment will improve precision and reduce patient burden relative to current methods. I will use simulation studies to 1) compare three different methods for developing a CAT algorithm, and 2) to develop and compare CAT algorithms tailored to longitudinal assessment. The research and training in this career development award will prepare me to be a principal investigator on research projects and grants that continue methodological enhancements in CAT used to measure patient reported health outcomes in behavioral cancer prevention and control studies, and to bring this tool into the clinic for research purposes. The methodology developed in this study will be applicable to a wide range of computer hardware devices, such as desktops, laptops, and even handheld computers.
描述(由申请人提供):我的目标是成为一名专注于行为科学应用的定量方法学家。我特别感兴趣的是使用计算机化自适应测试(CAT)来改善患者报告的健康结果的纵向测量,这些结果对癌症预防和癌症控制很重要,比如抑郁症状。为了精确衡量患者报告的健康结果,自我报告调查往往很长,并造成中度至高度的应答者负担。CAT是一种比目前大多数标度更有效的测量工具,减少了响应负担,同时提高了精度。我建议改进纵向评估,首先改进CAT方法,以获得更高的收益,然后开发CAT测量工具,用于对患者报告的健康结果进行纵向测量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RICHARD SWARTZ其他文献

RICHARD SWARTZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RICHARD SWARTZ', 18)}}的其他基金

Bayesian Methods for a Longitudinal CAT
纵向 CAT 的贝叶斯方法
  • 批准号:
    7064298
  • 财政年份:
    2005
  • 资助金额:
    $ 13.61万
  • 项目类别:
Bayesian Methods for a Longitudinal CAT
纵向 CAT 的贝叶斯方法
  • 批准号:
    7426836
  • 财政年份:
    2005
  • 资助金额:
    $ 13.61万
  • 项目类别:
Bayesian Methods for a Longitudinal CAT
纵向 CAT 的贝叶斯方法
  • 批准号:
    6904296
  • 财政年份:
    2005
  • 资助金额:
    $ 13.61万
  • 项目类别:
Bayesian Methods for a Longitudinal CAT
纵向 CAT 的贝叶斯方法
  • 批准号:
    7240593
  • 财政年份:
    2005
  • 资助金额:
    $ 13.61万
  • 项目类别:

相似海外基金

Evaluation and construction of the Bayesian method to accelerate drug development
加速药物开发的贝叶斯方法的评估和构建
  • 批准号:
    23K11015
  • 财政年份:
    2023
  • 资助金额:
    $ 13.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Measurement of economic disparity using the Bayesian method
使用贝叶斯方法测量经济差距
  • 批准号:
    16K03589
  • 财政年份:
    2016
  • 资助金额:
    $ 13.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
  • 批准号:
    9249077
  • 财政年份:
    2016
  • 资助金额:
    $ 13.61万
  • 项目类别:
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
  • 批准号:
    9035008
  • 财政年份:
    2016
  • 资助金额:
    $ 13.61万
  • 项目类别:
Improvement of McNemar test using Bayesian method
使用贝叶斯方法改进麦克尼马尔检验
  • 批准号:
    16K19249
  • 财政年份:
    2016
  • 资助金额:
    $ 13.61万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Hierarchical Bayesian method for analyzing high polymorphic HLA genome sequence
分析高多态性 HLA 基因组序列的分层贝叶斯方法
  • 批准号:
    15H02775
  • 财政年份:
    2015
  • 资助金额:
    $ 13.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Correcting Hazard Ratio Estimates for Outcome Misclassification: a Bayesian Method
纠正结果错误分类的风险比估计:贝叶斯方法
  • 批准号:
    327718
  • 财政年份:
    2015
  • 资助金额:
    $ 13.61万
  • 项目类别:
    Operating Grants
Non-parametric Bayesian Method Development
非参数贝叶斯方法开发
  • 批准号:
    10928617
  • 财政年份:
  • 资助金额:
    $ 13.61万
  • 项目类别:
Non-parametric Bayesian Method Development
非参数贝叶斯方法开发
  • 批准号:
    10255718
  • 财政年份:
  • 资助金额:
    $ 13.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了