Rational Design of High-Affinity Peptide Drug Candidates
高亲和力肽候选药物的合理设计
基本信息
- 批准号:7671034
- 负责人:
- 金额:$ 27.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2011-02-28
- 项目状态:已结题
- 来源:
- 关键词:ANXA5 geneAdhesionsAffectAffinityAffinity ChromatographyAmino Acid SequenceAmino AcidsAnnexin A1AutomationBindingBiocompatibleBioinformaticsBiological AssayBiological FactorsBiological MarkersBiological ProcessBiotechnologyBlast CellCell DeathCell physiologyChemicalsChemistryClassificationComplementComplexComputational BiologyComputersCustomDataDatabasesDetectionDevelopmentDiagnosisDiseaseFluorescenceGenerationsHomologous ProteinHourHumanIn SituIntegrinsInvestigationJournalsKnowledgeLabelLeadLibrariesLigand BindingLigandsLiteratureMalignant NeoplasmsManualsMapsMarketingMediatingMethodologyMethodsMicroarray AnalysisOctreotideParent-Child RelationsPathologyPathway interactionsPatternPeptide LibraryPeptide Sequence DeterminationPeptidesPhage DisplayPharmaceutical PreparationsPharmacologic SubstancePhase I Clinical TrialsPlayProcessPropertyProtein BindingProtein DatabasesProtein DeregulationProtein-Protein Interaction MapProteinsProteomicsPublishingRGD (sequence)ReadingReagentRegulationRoboticsRoleSSTR2 geneSamplingScreening procedureSequence HomologySeriesSignal TransductionSourceSpecificitySpectrinStructureTechniquesTechnologyTestingTherapeutic AgentsTherapeutic UsesTimeValidationVariantabstractingannexin A5basecell growthcombinatorialcomputer programcostdata miningdensitydesigndrug candidatedrug developmentdrug discoveryexperienceheuristicshigh throughput screeningimmunogenicimprovedin vitro Assayinnovationinterestknowledge baselead seriesmigrationnovel strategiesnovel therapeuticsnumb proteinoptimismpeptidomimeticspre-clinicalprospectiveprotein aminoacid sequenceprotein functionprotein phosphatase inhibitor-2protein protein interactionprotein purificationresearch and developmentsmall moleculestereochemistrysuccesstext searchingtool
项目摘要
DESCRIPTION (provided by applicant): The R&D of new drugs is a protracted and expensive process. The typical drug discovery process evolves from target identification to preclinical development and marketing. Several studies estimate the average cost of development of a single new drug in excess of $800 million. A large portion of this expense is attributed to abandoned lead candidates initially obtained from screening vast random combinatorial libraries of compounds for activity against the target but which fail for various reasons. Recent vast strides in the unraveling of the human interactive have allowed the mapping of a large numbers of protein-protein interactions, several of which are key to the pathology of disease. The identification of modulators of protein function and the process of transforming these into high-content lead series are key activities in modern drug discovery. A rapid methodology to identify high-affinity peptide drug candidates able to modulate key protein interactions, and having high potential for success as drug leads, will have huge benefits. Short high-affinity peptide ligands are highly desirable drug candidates because they are robust, easily synthesized in large quantities, and readily purified. Several short peptides have demonstrated significant ability to modulate protein-protein interactions - e.g. octreotide (SSTR2) and RGD peptides (1v23 integrins), and several others have led to the development of highly potent peptidomimetics. In preliminary studies, Lynntech has demonstrated that it is feasible to obtain high-affinity peptide ligands to target proteins based on their known amino acid sequence alone using a modular approach that combined computational biology and bioinformatics tools with a unique, advanced, high-density peptide microarray for high throughput screening of candidate ligands. Several high-affinity peptide ligands (20-30 nM affinity) were obtained after a single array screening, with the potential to refine the affinity further using iterative arrays. The methodology used conveys itself readily for automation. This study proposes the creation of a new bioinformatics engine for High-Affinity Ligand Optimization (HALO) that will enable the rapid, automated, and customized generation, screening, and identification of high affinity peptide ligands to any protein-protein interaction integral to disease pathology. HALO is a highly potent tool that will be useful for rapid hit-to-lead peptide drug candidate generation and is expected to revolutionize and expedite the process of drug discovery.
描述(申请人提供):新药的研发是一个漫长而昂贵的过程。典型的药物发现过程从目标识别到临床前开发和营销。几项研究估计,开发一种新药的平均成本超过8亿美元。这一费用的很大一部分归因于最初通过筛选大量随机化合物组合文库以获得针对靶标的活性而放弃的先导候选物,但由于各种原因而失败。最近在揭示人类相互作用方面取得了巨大进展,这使得绘制大量蛋白质-蛋白质相互作用的图谱成为可能,其中一些是疾病病理学的关键。蛋白质功能调节剂的鉴定和将其转化为高含量先导系列的过程是现代药物发现的关键活动。一种快速识别高亲和力肽候选药物的方法,能够调节关键蛋白质的相互作用,并且作为药物先导具有很高的成功潜力,将带来巨大的好处。短的高亲和肽配体是非常理想的候选药物,因为它们健壮,易于大量合成,易于纯化。一些短肽已经证明了调节蛋白质-蛋白质相互作用的显著能力-例如奥曲肽(SSTR2)和RGD肽(1v23整合素),以及其他一些已经导致了高效肽模拟物的发展。在初步研究中,Lynntech已经证明,使用模块化方法,将计算生物学和生物信息学工具与独特、先进、高密度肽微阵列相结合,用于高通量筛选候选配体,获得基于已知氨基酸序列的高亲和力肽配体是可行的。通过单阵列筛选获得了几个高亲和力的肽配体(亲和度为20-30 nM),并有可能通过迭代阵列进一步优化亲和度。所使用的方法很容易实现自动化。本研究提出创建一个新的生物信息学引擎,用于高亲和力配体优化(HALO),该引擎将能够快速、自动化和定制地生成、筛选和鉴定与疾病病理相关的任何蛋白质-蛋白质相互作用的高亲和力肽配体。HALO是一种非常有效的工具,可用于快速生成候选肽药物,并有望彻底改变和加快药物发现过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sriram Shankar其他文献
Sriram Shankar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sriram Shankar', 18)}}的其他基金
Rational Design of High-Affinity Peptide Drug Candidates
高亲和力肽候选药物的合理设计
- 批准号:
8199938 - 财政年份:2009
- 资助金额:
$ 27.75万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 27.75万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 27.75万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 27.75万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 27.75万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 27.75万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 27.75万 - 项目类别: