Integrated Cheminformatics Resource for Orphan Neurodegenerative Diseases
孤儿神经退行性疾病的综合化学信息学资源
基本信息
- 批准号:7559157
- 负责人:
- 金额:$ 9.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAddressAffectAlgorithmsApplications GrantsAppointmentAreaBenchmarkingBinding SitesBioinformaticsBiologicalBiotechnologyBrainChemical StructureChemicalsChicagoCollaborationsCommunitiesComplementComputer SimulationComputer Vision SystemsComputing MethodologiesDataData SetDatabasesDescriptorDevelopmentDiseaseDrug DesignDrug IndustryEnsureFamilyFoundationsFundingFutureGenomicsGoalsGrantHistone DeacetylaseHuntington DiseaseIllinoisIndividualIndustryInformaticsInternetLettersLibrariesLigandsMarketingMedicineMethodsMissionModelingMolecularMolecular ModelsNamesNeurodegenerative DisordersNorth CarolinaOrphanPainPatientsPatternPerformancePharmaceutical PreparationsPharmacologic SubstancePhaseProductivityProtein BindingProtein FamilyProteinsProtocols documentationPublicationsQuantitative Structure-Activity RelationshipResearchResearch InfrastructureResearch PersonnelResearch SupportResearch TrainingResource InformaticsResourcesRoleScienceScientistScreening procedureShapesSolidSpeedSpinal Muscular AtrophyStagingStructureStructure-Activity RelationshipTechniquesTechnologyTestingTranslational ResearchUnited States National Institutes of HealthUniversitiesValidationVisionWorkbasecareercheminformaticscomputer infrastructurecomputer sciencecomputerized toolscomputing resourcesconformerdesigndrug candidatedrug discoveryinnovationmethod developmentmodel developmentmolecular modelingnovelpharmacophorephosphodiesterase IVphosphodiesterase Vphosphoric diester hydrolasepredictive modelingresearch studysuccessthree dimensional structuretoolvirtualweb-accessible
项目摘要
DESCRIPTION (provided by applicant): In this project, we seek to continue our development of new innovative computational tools, apply them to model relevant protein targets of orphan neurodegenerative diseases, and build a publicly accessible web resource to host these tools and models. These goals will be achieved via two Specific Aims. Aim-1 is to develop and validate two new structure-based computational tools. The first tool (Shape4) is a fast, structure-based virtual screening method designed to search large multi-conformer molecular databases for potential ligands for a protein target. It is based on this chief hypothesis: a ligand molecule's topographical shape and pharmacophore features should be complementary to those of its protein binding site. Novel computational geometry and shape modeling algorithms will be employed to fulfill the shape / pharmacophore matching tasks. The second tool (SB-PPK) generates structure-based descriptors for organic molecules. The descriptors so generated depend not only on the structure of an organic molecule, but also on the binding site features of the target protein. Thus, these new descriptors overcome the drawbacks of traditional molecular descriptors that depend only on the structures of organic molecules, regardless of what the target protein is. The new descriptors will be employed in conjunction with QSAR (quantitative structure activity relationship) modeling workflow to develop predictive models for selected protein targets (Aim-2a). Specifically, the two new methods developed in Aim-1 will be applied to build predictive models for targets from phosphodiesterase (PDE) and histone deacetylase (HDAC) families: PDE- 4, PDE-5, HDAC-7 and HDAC-8. We will then deploy the validated models via a web portal (Aim-2b) to benefit the research community of orphan neurodegenerative diseases. We aim to develop and apply innovative computational tools to study the protein targets of orphan neurodegenerative diseases, and to establish an open-access informatics resource to support the drug discovery efforts in these disease areas. We will ultimately contribute to alleviating the pain of orphan neurodegenerative disease patients.
描述(由申请人提供):在这个项目中,我们寻求继续开发新的创新计算工具,将它们应用于孤儿神经退行性疾病的相关蛋白质靶标建模,并建立一个可公开访问的网络资源来托管这些工具和模型。这些目标将通过两个具体目标来实现。 Aim-1 是开发和验证两种新的基于结构的计算工具。第一个工具 (Shape4) 是一种基于结构的快速虚拟筛选方法,旨在搜索大型多构象分子数据库,寻找蛋白质靶标的潜在配体。它基于以下主要假设:配体分子的拓扑形状和药效团特征应与其蛋白质结合位点互补。将采用新颖的计算几何和形状建模算法来完成形状/药效团匹配任务。第二个工具(SB-PPK)为有机分子生成基于结构的描述符。如此生成的描述符不仅取决于有机分子的结构,还取决于目标蛋白的结合位点特征。因此,这些新的描述符克服了传统分子描述符的缺点,即仅依赖于有机分子的结构,而不管目标蛋白是什么。新的描述符将与 QSAR(定量结构活性关系)建模工作流程结合使用,为选定的蛋白质目标 (Aim-2a) 开发预测模型。具体来说,Aim-1中开发的两种新方法将用于构建磷酸二酯酶(PDE)和组蛋白脱乙酰酶(HDAC)家族靶标的预测模型:PDE-4、PDE-5、HDAC-7和HDAC-8。然后,我们将通过门户网站 (Aim-2b) 部署经过验证的模型,以使孤儿神经退行性疾病的研究界受益。我们的目标是开发和应用创新的计算工具来研究孤儿神经退行性疾病的蛋白质靶点,并建立开放获取的信息资源来支持这些疾病领域的药物发现工作。我们最终将为减轻孤儿神经退行性疾病患者的痛苦做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weifan Zheng其他文献
Weifan Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weifan Zheng', 18)}}的其他基金
Integrated Cheminformatics Resource for Orphan Neurodegenerative Diseases
孤儿神经退行性疾病的综合化学信息学资源
- 批准号:
8209233 - 财政年份:2009
- 资助金额:
$ 9.84万 - 项目类别:
Integrated Cheminformatics Resource for Orphan Neurodegenerative Diseases
孤儿神经退行性疾病的综合化学信息学资源
- 批准号:
7753228 - 财政年份:2009
- 资助金额:
$ 9.84万 - 项目类别:
Integrated Cheminformatics Resource for Orphan Neurodegenerative Diseases
孤儿神经退行性疾病的综合化学信息学资源
- 批准号:
8019584 - 财政年份:2009
- 资助金额:
$ 9.84万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Research Grant














{{item.name}}会员




