Studying the control of Cytokinesis as an Evolved Complex System
研究细胞分裂作为进化复杂系统的控制
基本信息
- 批准号:7905029
- 负责人:
- 金额:$ 31.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingActomyosinAddressAneuploidyAnimal ModelAnimalsBehaviorBindingBiochemicalCDC2 Protein KinaseCaenorhabditis elegansCell CycleCell NucleolusCell divisionCellsCellular biologyChromosome SegregationCodeComplexControlled StudyCytokinesisCytoskeletal ProteinsDevelopmentDisabled PersonsEmbryoEmbryonic DevelopmentEnsureEventEvolutionExpert SystemsFailureFeedbackFrightGene ExpressionGenerationsGenesGeneticGenomic InstabilityGenomicsGoalsGrowth and Development functionGuanosine Triphosphate PhosphohydrolasesHybridsImageIndividualLinkMalignant NeoplasmsMitosisMitoticModelingMolecularMonitorMotorMutationMyosin Type IINatureNematodaNoiseNull LymphocytesOrganismOutputPathway interactionsPhosphorylationPolyploidyProcessProtein phosphataseQuantitative MicroscopyRNAReactionRegulationSaccharomycetalesSignal TransductionSignaling MoleculeSimulateSystemTestingTimeVariantWorkYeastsbasebiological systemscancer cellcomplex biological systemscontrolled releasedesigndisorder preventiondriving forceexperimental analysisflexibilitygenetic manipulationmodels and simulationnetwork modelspublic health relevanceresearch studyresponsetooltumorigenesis
项目摘要
DESCRIPTION (provided by applicant): The broad goal of the work proposed in this application is to understand the design principles and evolutionary dynamics of the cytokinesis pathway using the budding yeast as the model organism. Cytokinesis the physical division of a cell in two is the last critical step of cell division. The complexity and importance of this process has made cytokinesis one of the extensively studied and yet still unsolved problems in cell biology. We and others previously showed that the budding yeast utilizes an actomyosin-based contractile ring to divide, as in animal cells. This finding allows us to use this highly tractable model to understand the basic principles and molecular pathways governing cytokinesis. Whereas our previous work followed a conventional approach of classical genetic and biochemical analyses, here we propose to take a unique combination of network modeling, quantitative imaging, evolutionary analysis, and genomic and expression microarrays, to understand the design principles underlying the molecular complexity. The main questions to be answered in this study are: 1) how a complex network of molecular interactions, involving signaling molecules and cytoskeletal proteins, which occur during mitosis, ensures asymmetric cell division in a spatially and temporally precise manner; and 2) how, in response to large perturbations, this cell division system could rapidly evolve to maintain its required functionality. PUBLIC HEALTH RELEVANCE: Cytokinesis is a crucial event in cell division, which is the basis for the growth and development of eukaryotic organisms. Failure in cytokinesis results in polyploidization, a common feature of cancer cells that is thought to contribute to genome instability and somatic evolution of cancer.1, 2. Asymmetric cytokinesis is also important for the generation of embryonic asymmetry and differentiation of diverse cell types3. Therefore, understanding the mechanism and regulation of cytokinsesis is important for treatment or prevention of diseases such as cancer and developmental abnormalities. 1.. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 5, 45-54 (2004). 2.. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043-1047 (2005). 3. Strome, S. Generation of cell diversity during early embryogenesis in the nematode Caenorhabditis elegans embryos. Int. Rev. Cyt. 114, 81-123 (1989).
描述(由申请人提供):本申请中提出的工作的总体目标是了解以出芽酵母为模式生物的细胞分裂途径的设计原理和进化动力学。细胞质分裂——细胞一分为二的物理分裂——是细胞分裂的最后一个关键步骤。这一过程的复杂性和重要性使细胞分裂成为细胞生物学中被广泛研究但仍未解决的问题之一。我们和其他人先前表明,芽殖酵母利用基于肌动球蛋白的收缩环进行分裂,就像在动物细胞中一样。这一发现使我们能够使用这个高度易于处理的模型来理解细胞分裂的基本原理和分子途径。鉴于我们之前的工作遵循经典遗传和生化分析的传统方法,在这里,我们建议采用网络建模,定量成像,进化分析以及基因组和表达微阵列的独特组合,以了解分子复杂性背后的设计原则。本研究中需要回答的主要问题是:1)有丝分裂过程中发生的复杂分子相互作用网络,包括信号分子和细胞骨架蛋白,如何确保细胞在空间和时间上精确的不对称分裂;2)如何应对大的扰动,这种细胞分裂系统能够快速进化以维持其所需的功能。公共卫生相关性:细胞分裂是细胞分裂的关键事件,是真核生物生长发育的基础。细胞质分裂失败导致多倍体化,这是癌细胞的一个共同特征,被认为有助于基因组不稳定和癌症的体细胞进化。1、2。不对称胞质分裂对胚胎不对称的产生和不同细胞类型的分化也很重要3。因此,了解细胞分裂的机制和调控对治疗或预防癌症和发育异常等疾病具有重要意义。1 . .从多倍体到非整倍体,基因组不稳定性与癌症。中华生物医学工程学报,5(2),2004。2.. 藤原,T.等。细胞分裂失败产生四倍体促进p53-null细胞的肿瘤发生。自然,437,1043-1047(2005)。3. 秀丽隐杆线虫胚胎早期胚胎发生过程中细胞多样性的产生。Int。修订版,114,81-123(1989)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WILLIAM J BOSL其他文献
WILLIAM J BOSL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WILLIAM J BOSL', 18)}}的其他基金
EEG Complexity Trajectory as an Early Biomarker for Autism
脑电图复杂性轨迹作为自闭症的早期生物标志物
- 批准号:
8410558 - 财政年份:2012
- 资助金额:
$ 31.94万 - 项目类别:
EEG Complexity Trajectory as an Early Biomarker for Autism
脑电图复杂性轨迹作为自闭症的早期生物标志物
- 批准号:
8242924 - 财政年份:2012
- 资助金额:
$ 31.94万 - 项目类别:
Brainbow: Novel tools for studying the development of neuronal circuits
Brainbow:研究神经元回路发育的新工具
- 批准号:
7497848 - 财政年份:2008
- 资助金额:
$ 31.94万 - 项目类别:
Brainbow: Novel tools for studying the development of neuronal circuits
Brainbow:研究神经元回路发育的新工具
- 批准号:
7683852 - 财政年份:2008
- 资助金额:
$ 31.94万 - 项目类别:
Analysis of Early Mouse Cerebellar Neuron Developmental Control Pathways
早期小鼠小脑神经元发育控制通路分析
- 批准号:
7459735 - 财政年份:2005
- 资助金额:
$ 31.94万 - 项目类别:
Analysis of Early Mouse Cerebellar Neuron Developmental Control Pathways
早期小鼠小脑神经元发育控制通路分析
- 批准号:
7076203 - 财政年份:2005
- 资助金额:
$ 31.94万 - 项目类别:
Analysis of Early Mouse Cerebellar Neuron Developmental Control Pathways
早期小鼠小脑神经元发育控制通路分析
- 批准号:
7665549 - 财政年份:2005
- 资助金额:
$ 31.94万 - 项目类别:
Analysis of Mitotic Exit Network Adaptability in Yeast
酵母有丝分裂出口网络适应性分析
- 批准号:
6917384 - 财政年份:2005
- 资助金额:
$ 31.94万 - 项目类别:
Analysis of Early Mouse Cerebellar Neuron Developmental Control Pathways
早期小鼠小脑神经元发育控制通路分析
- 批准号:
7253127 - 财政年份:2005
- 资助金额:
$ 31.94万 - 项目类别:
Studying the control of Cytokinesis as an Evolved Complex System
研究细胞分裂作为进化复杂系统的控制
- 批准号:
7665363 - 财政年份:1999
- 资助金额:
$ 31.94万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 31.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 31.94万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 31.94万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 31.94万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 31.94万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 31.94万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 31.94万 - 项目类别:
Postdoctoral Fellowships