CORE H: Mouse Physiology

核心 H:小鼠生理学

基本信息

  • 批准号:
    8318653
  • 负责人:
  • 金额:
    $ 24.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

The past decade has seen the definition of large families and super-families of neural genes whose related but different sequences provide great opportunity if we can understand their functions and exploit their diversity. There can be no doubt that a major challenge facing modern neurobiology is the understanding and manipulation of gene function, both known and unknown. Institutions concerned with the critical issues of mental health and cognitive disability must look beyond gene identification and into the structure and function of the proteins encoded by these newly discovered sequences and the roles these proteins play in the development and behavior of the individual. While the techniques for gene discovery have become less expensive and more accessible, the most powerful techniques for the study of function have become more expensive and more technically demanding. It is increasingly difficult for any single investigator to be able to fully explore the structure of a gene and its regulation, the structure of the protein it encodes, the localization of the protein in the animal, the role of the protein in the normal animal, and the consequences of the absence or alteration of that protein in disease. However, successful exploitation of the gene discovery requires at least portions of each of these activities in part simply to set priorities for further studies. It is the purpose of the BCM-IDDRC cores to provide access to techniques and assays that will allow the investigator to make maximum progress, without undue duplication of effort. The Mouse Physiology Core is designed to provide BCM-IDDRC investigators with a battery of functional assays that will provide initial insight into the neurophysiologic consequences of a specific mutation. This core is considered a significant component of the BCM-IDDRC because it will help address the most common question following the creation of a new mouse mutant; "What is wrong with my mouse?" The BCM-IDDRC proposes to offer its investigators access to a battery of electrophysiologic assays that will help answer this question and direct the investigator's attention to experiments that might more directly address the role of a particular gene in generating a mental retardation or developmental disability phenotype. The BCM-IDDRC at Baylor College of Medicine is well established in studying synaptic transmission and synaptic plasticity in the central nervous system. For many years Dr. Rosenmund's laboratory has been investigating basic function and dysfunction of excitatory and inhibitory synapses as well as hippocampal electrophysiology and plasticity. Dr. Jeff Noebels has been a pioneer in the use of EEG techniques to understand the genetic and molecular basis of epilepsy, and specifically in the use of mouse models to understand epilepsy. The Mouse Physiology Core will be divided into two components. The Synaptic Physiology component of the Core will allow investigators to determine the basic attributes of synaptic function from cultured neurons as well as from acute slices from hippocampus. These preparations will allow for detailed examination of synaptic properties, circuitry function and synaptic plasticity. This information is particulariy germane to the mission of the BCM-IDDRC, given the well-documented role of the hippocampus in learning and memory, and the newly arising notion that autism and related diseases have their etiology (at least in part) at dysfunctional synapses. The procedures established will allow the assessment of several parameters related to normal synaptic physiology. For the presynaptic site, this includes determination of quantal content, readily releasable vesicle pool size, vesicular release probability, synaptic release probability, and several forms of short time facilitation and depression. For the postsynaptic site, this includes mlPSC and mEPSC amplitude and kinetics, GABAA, AMPA and NMDA receptor function, as well as the determination of synaptic and extrasynaptic receptor population. These measurements will be based on patch clamp whole cell recording techniques. Morphological analysis of dendritic structure, synapse formation and synapse activity are provided using quantitative light microscopy analysis. In slices, additional analysis of input-output relationships for various intensities of presynaptic stimulation as well as several short- and long-term forms of synaptic plasticity will be assessed, including: paired-pulse facilitation, post-tetanic potentiation, long-term potentiation (LTP), and longterm depression (LTD). Latter procedures will utilize extracellular recording in the hippocampal slice preparation, using ongoing standard protocols already used here. The Electroencephalography component of the Core will enable BCM-IDDRC investigators to evaluate the development of cortical excitability and brain function over prolonged periods in behaving animal models of mental retardation produced by genetic engineering techniques. Depressed excitability or abnormal brain rhythms are among the eariiest objective phenotypes of genetic human mental retardation syndromes. A high incidence of epilepsy is also associated with mental retardation, and the facility specializes in state of the art seizure detection techniques and assessment of seizure threshold. The ability to correlate spontaneous EEG activity with behavioral analysis by use of synchronized video/EEG monitoring is critical to the interpretation of the mutant nervous system phenotypes studied by the BCM-IDDRC.
在过去的十年里,神经基因的大家族和超家族的定义与之相关,但 如果我们能够理解它们的功能并利用它们的多样性,不同的序列提供了巨大的机会。 毫无疑问,现代神经生物学面临的一个主要挑战是理解和 基因功能的操纵,既有已知的也有未知的。关注关键问题的机构 心理健康和认知障碍必须超越基因识别,研究结构和功能 这些新发现的序列所编码的蛋白质以及这些蛋白质在 个体的发展和行为。 虽然基因发现的技术已经变得更便宜、更容易获得,但最强大的 研究功能的技术变得更昂贵,技术要求也更高。它是 对于任何一个研究人员来说,要完全探索一个基因的结构和它的 调节,它编码的蛋白质的结构,蛋白质在动物中的定位, 正常动物体内的蛋白质,以及疾病中该蛋白质缺失或改变的后果。 然而,成功地利用基因发现至少需要这些活动中的一部分 这一部分只是为了确定进一步学习的优先事项。BCM-IDDRC内核的目的是提供对 允许调查员取得最大进展的技术和分析,而不会出现不必要的重复 所付出的努力。 老鼠生理学核心旨在为BCM-IDDRC研究人员提供一系列功能 将提供对特定突变的神经生理学后果的初步洞察的分析。这个核心 被认为是BCM-IDDRC的重要组成部分,因为它将帮助解决最常见的 在创造了一个新的老鼠突变体之后,人们提出了一个问题:“我的老鼠出了什么问题?”BCM-IDDRC 提议为其调查人员提供一系列电生理分析,以帮助回答这一问题 询问并引导研究人员注意可能更直接地解决 导致智力低下或发育障碍表型的特定基因。 贝勒医学院的BCM-IDDRC在研究突触传递和 中枢神经系统中的突触可塑性。多年来,罗森蒙德博士的实验室 兴奋性突触和抑制性突触以及海马区的基本功能和功能障碍 电生理学和可塑性。杰夫·诺贝尔斯博士是使用脑电技术的先驱 了解癫痫的遗传和分子基础,特别是在使用小鼠模型来 了解癫痫。 老鼠生理学核心将分为两个部分。神经突触的生理成分 核心将允许研究人员从培养的神经元中确定突触功能的基本属性 也可以从海马体的急性切片中提取。这些准备工作将允许对突触进行详细的检查 特性、回路功能和突触可塑性。这一信息与……的任务特别相关。 BCM-IDDRC,考虑到海马体在学习和记忆中的作用已经得到了充分的证明,以及新的 产生了自闭症和相关疾病的病因(至少部分)是突触功能障碍的概念。 建立的程序将允许评估与正常突触相关的几个参数 生理学。对于突触前部位,这包括测定量子含量、容易释放的囊泡 池大小、囊泡释放概率、突触释放概率以及短时促进的几种形式 和抑郁症。对于突触后部位,这包括mlPSC和mEPSC的幅度和动力学,GABAA, AMPA和NMDA受体功能以及突触和突触外受体的测定 人口。这些测量将基于膜片钳全细胞记录技术。 对树突结构、突触的形成和突触的活性进行了形态分析 定量光学显微镜分析。在切片中,对各种类型的输入-输出关系进行附加分析 突触前刺激的强度以及突触可塑性的几种短期和长期形式 评估,包括:双脉冲促进、强直后增强、长时程增强(LTP)和长时程增强 抑郁(有限公司)。后一种程序将利用海马片中的细胞外记录 准备,使用这里已经使用的持续标准协议。 核心的脑电部分将使BCM-IDDRC调查人员能够评估 大脑皮层兴奋性和脑功能在长期行为动物模型中的发展 由基因工程技术产生的智力迟缓。兴奋性低落或大脑异常 节律是遗传性人类精神发育迟滞综合征最早的客观表型之一。一次高潮 癫痫的发病率也与智力低下有关,该设施专门从事最先进的研究 癫痫发作检测技术和癫痫发作阈值评估。关联自发脑电的能力 通过使用同步视频/脑电监测进行行为分析的活动对于解释 用BCM-IDDRC研究突变的神经系统表型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHRISTIAN ROSENMUND其他文献

CHRISTIAN ROSENMUND的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHRISTIAN ROSENMUND', 18)}}的其他基金

Analysis of Ca2+ -Triggered Neurotransmitter Release
Ca2 触发神经递质释放的分析
  • 批准号:
    7460706
  • 财政年份:
    2005
  • 资助金额:
    $ 24.63万
  • 项目类别:
Mechanisms of Vesicle Priming and Short-Term Plasticity
囊泡启动和短期可塑性的机制
  • 批准号:
    6903670
  • 财政年份:
    2005
  • 资助金额:
    $ 24.63万
  • 项目类别:
Mechanisms of Vesicle Priming and Short-Term Plasticity
囊泡启动和短期可塑性的机制
  • 批准号:
    7586140
  • 财政年份:
    2005
  • 资助金额:
    $ 24.63万
  • 项目类别:
Analysis of Ca2+ -Triggered Neurotransmitter Release
Ca2 触发神经递质释放的分析
  • 批准号:
    7072241
  • 财政年份:
    2005
  • 资助金额:
    $ 24.63万
  • 项目类别:
Mechanisms of Vesicle Priming and Short-Term Plasticity
囊泡启动和短期可塑性的机制
  • 批准号:
    7015005
  • 财政年份:
    2005
  • 资助金额:
    $ 24.63万
  • 项目类别:
Analysis of Ca2+ -Triggered Neurotransmitter Release
Ca2 触发神经递质释放的分析
  • 批准号:
    6967013
  • 财政年份:
    2005
  • 资助金额:
    $ 24.63万
  • 项目类别:
Analysis of Ca2+ -Triggered Neurotransmitter Release
Ca2 触发神经递质释放的分析
  • 批准号:
    7640959
  • 财政年份:
    2005
  • 资助金额:
    $ 24.63万
  • 项目类别:
Mechanisms of Vesicle Priming and Short-Term Plasticity
囊泡启动和短期可塑性的机制
  • 批准号:
    7393076
  • 财政年份:
    2005
  • 资助金额:
    $ 24.63万
  • 项目类别:
Mechanisms of Vesicle Priming and Short-Term Plasticity
囊泡启动和短期可塑性的机制
  • 批准号:
    7217416
  • 财政年份:
    2005
  • 资助金额:
    $ 24.63万
  • 项目类别:
Analysis of Ca2+ -Triggered Neurotransmitter Release
Ca2 触发神经递质释放的分析
  • 批准号:
    7259427
  • 财政年份:
    2005
  • 资助金额:
    $ 24.63万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 24.63万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了