Determinants of Calcium Ion Influx into Dendritic Spines

钙离子流入树突棘的决定因素

基本信息

  • 批准号:
    7900020
  • 负责人:
  • 金额:
    $ 0.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Neurons in the mammalian central nervous system communicate with each other via synapses. The dendrites of cells which receive excitatory glutamatergic input are highly complex structures, and covered in tiny membranous protuberances called dendritic spines. Spines house the postsynaptic density and associated machinery that constitute the post-synaptic side of the synapse, and while significant progress has been made in understanding the interactions and physiology of these proteins, many questions remain. Recent advances in optical techniques have allowed for stimulating individual synapses and simultaneously visualizing local neuronal activity on the fine spatial scale of single dendritic spines. We propose to use these methods to investigate the interplay of postsynaptic ion channels at individual synapses. The specific goal of this work is to obtain a detailed understanding of the events that shape the postsynaptic responses at single synapses on the dendrites of CA1 pyramidal neurons. In particular, the experiments proposed here will address two main questions. First, what are the signaling events downstream of glutamate receptor activation that shape potentials and calcium ion accumulation in dendritic spines? Secondly, are calcium signals in spines of CA1 pyramidal neurons influenced by near-coincident synaptic activity and action potentials? To address these questions, we will use a combination of whole-cell patch clamp physiology, 2-photon scanning laser microscopy (2PLSM), and 2-photon laser uncaging of glutamate to stimulate and record events in individual dendritic spines. More generally, this proposal aims to explore fundamental aspects of the events that underlie communication between neurons. Changes in the strength of connections between neurons in the central nervous system are thought to underlie learning and memory, and understanding the complex signaling events that occur in dendritic spines is crucial to understanding these phenomena. Furthermore, many mutations in proteins located in spines are linked to human neurological disorders, and spine morphology is perturbed in many mouse models of neurological diseases. Understanding the properties of synaptic transmission and the signaling dynamics in spines is vital to explaining the cellular mechanisms of neurodegenerative disorders like Alzheimer's and Parkinson's diseases.
描述(由申请人提供):哺乳动物中枢神经系统中的神经元通过突触相互通信。接受兴奋性突触能输入的细胞树突是高度复杂的结构,并被称为树突棘的微小膜突起覆盖。棘容纳突触后密度和构成突触的突触后侧的相关机制,虽然在理解这些蛋白质的相互作用和生理学方面取得了重大进展,但仍存在许多问题。光学技术的最新进展已经允许刺激单个突触,同时在单个树突棘的精细空间尺度上可视化局部神经元活动。我们建议使用这些方法来研究突触后离子通道在单个突触的相互作用。这项工作的具体目标是获得一个详细的了解的事件,形状的突触后反应在单个突触上的树突CA 1锥体神经元。特别是,这里提出的实验将解决两个主要问题。首先,谷氨酸受体激活的下游信号事件是什么,这些事件塑造了树突棘中的电位和钙离子积累?第二,CA 1区锥体神经元棘上的钙信号是否受到几乎同时发生的突触活动和动作电位的影响?为了解决这些问题,我们将使用全细胞膜片钳生理学,2-光子扫描激光显微镜(2 PLSM),和2-光子激光释放谷氨酸盐的组合来刺激和记录单个树突棘中的事件。更一般地说,这个提议旨在探索神经元之间通信的基础事件的基本方面。中枢神经系统中神经元之间连接强度的变化被认为是学习和记忆的基础,理解树突棘中发生的复杂信号事件对于理解这些现象至关重要。此外,位于棘中的蛋白质中的许多突变与人类神经系统疾病有关,并且棘形态在许多神经系统疾病的小鼠模型中受到干扰。了解突触传递的特性和脊髓中的信号动力学对于解释阿尔茨海默病和帕金森病等神经退行性疾病的细胞机制至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Giessel其他文献

Andrew Giessel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 0.18万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 0.18万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 0.18万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 0.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 0.18万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 0.18万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 0.18万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 0.18万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 0.18万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 0.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了