Defining the mechanisms of secretion in the Drosophila salivary gland
定义果蝇唾液腺的分泌机制
基本信息
- 批准号:7880078
- 负责人:
- 金额:$ 5.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAntibodiesB-LymphocytesBindingBinding SitesBioinformaticsBiological AssayBiological ModelsBlood GlucoseCREB1 geneCellsConfocal MicroscopyConsensusDefectDevelopmentDiabetes MellitusDigestionDiseaseDrosophila genomeDrosophila genusElectrophoretic Mobility Shift AssayEmbryoEnhancersEnzymesExhibitsFoodFoundationsFoxesFunctional disorderGene ComponentsGene ExpressionGene TargetingGenesGeneticGlucagonGoalsHematopoietic NeoplasmsHomologous GeneHormonesHumanImmune systemIn Situ HybridizationIn VitroInfectionInsulinKnock-outLearningLibrariesMediatingMetabolismMethodsMultiple MyelomaMutateMutationNormal CellOrganOrganellesOrganismPancreasPancreatitisPathogenesisPathway interactionsPhosphorusPlasma CellsPlayProteinsRegulationReporter GenesRoleSalivary GlandsSiteSystemTransmission Electron MicroscopyUp-RegulationWorkbiological adaptation to stressblood glucose regulationdifferentiated B cellfightingflyhomologous recombinationhuman diseasein vivointerestloss of functionmutantplasma cell differentiationresearch studyresponsetherapeutic developmenttranscription factor
项目摘要
DESCRIPTION (provided by applicant): Many specialized organs require high-level secretory activity to perform their normal functions. For example, in the immune system, B-cells differentiate into plasma cells by up-regulating the secretory machinery, thereby acquiring the ability to secrete large amounts of antibodies that fight infection and disease. Also, the pancreas secretes digestive enzymes that aid in food metabolism, as well as hormones that regulate blood glucose levels (i.e. glucagons and insulin). Correspondingly, loss of secretory control has been attributed to the pathogenesis of many human diseases, including pancreatitis and diabetes, as well as the blood cancer, multiple myeloma. One key to understanding secretory organ development and function is to define the mechanisms whereby normal cells gain the ability to secrete large amounts of protein. To do this, I will use a model system, the Drosophila salivary gland, which is the largest secretory organ in this organism and consists of cells that are specialized for high-level secretion.
Two salivary gland expressed transcription factors (proteins that regulate expression of other genes) CrebA and Xbp1, have a role in regulating secretory activity. CrebA is required for the high level expression of 34 known secretory pathway component genes in the salivary gland. Consistent with this finding, CrebA mutants exhibit defects in secretory function. Xbp1 is a highly conserved transcription factor involved in ER stress response and whose mammalian counterpart is normally required for B-cells to become antibody secreting plasma cells. In Drosophila, Xbp1 is highly expressed in the embryonic salivary gland. Thus, I propose that CrebA and Xbp1 may function cooperatively to initiate and maintain the high-level secretory function of this organ. My studies will determine if CrebA and Xbp1 work in the same or parallel pathways to mediate secretory activity, if CrebA and xbpl mutants have defects in the secretory machinery, and if CrebA and/or Xbp1 directly regulate expression of the genes required to make this machinery. Finally, I will identify all of the genes that depend on CrebA and Xbp1 for their expression in the salivary gland, potentially revealing additional factors necessary for secretory function. Since both CrebA and Xbp1 homologues exist in humans, the mechanisms required to regulate secretory activity in the Drosophila salivary gland are likely to be conserved. Thus, these studies will provide a foundation for the development of therapeutics to treat diseases characterized by secretory dysfunction.
描述(由申请人提供):许多专门的器官需要高水平的分泌活动来执行其正常功能。例如,在免疫系统中,B细胞通过上调分泌机制分化为浆细胞,从而获得分泌大量抗体的能力,这些抗体可以对抗感染和疾病。此外,胰腺分泌有助于食物代谢的消化酶,以及调节血糖水平的激素(即胰高血糖素和胰岛素)。相应地,分泌控制的丧失已被归因于许多人类疾病的发病机制,包括胰腺炎和糖尿病,以及血癌、多发性骨髓瘤。理解分泌器官发育和功能的一个关键是确定正常细胞获得分泌大量蛋白质的能力的机制。为了做到这一点,我将使用一个模型系统,果蝇唾液腺,它是这种生物体中最大的分泌器官,由专门用于高水平分泌的细胞组成。
两种唾液腺表达的转录因子(调节其他基因表达的蛋白质)CrebA和Xbp 1在调节分泌活性中起作用。CrebA是唾液腺中34种已知分泌途径组分基因高水平表达所必需的。与这一发现相一致,CrebA突变体表现出分泌功能的缺陷。Xbp 1是一种参与ER应激反应的高度保守的转录因子,其哺乳动物对应物通常是B细胞成为分泌抗体的浆细胞所需的。在果蝇中,Xbp 1在胚胎唾液腺中高度表达。因此,我建议,CrebA和Xbp 1可能发挥作用,合作启动和维持高水平的分泌功能,这一器官。我的研究将确定CrebA和Xbp 1是否以相同或平行的途径介导分泌活性,CrebA和Xbp 1突变体是否在分泌机制中存在缺陷,以及CrebA和/或Xbp 1是否直接调节制造这种机制所需的基因表达。最后,我将确定所有依赖于CrebA和Xbp 1在唾液腺中表达的基因,可能揭示分泌功能所需的其他因素。由于CrebA和Xbp 1同源物都存在于人类中,因此调节果蝇唾液腺分泌活性所需的机制可能是保守的。因此,这些研究将为开发治疗以分泌功能障碍为特征的疾病的疗法提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Marie Fox其他文献
Rebecca Marie Fox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca Marie Fox', 18)}}的其他基金
Drosophila salivary gland, a model for studying the molecular basis of secretion
果蝇唾液腺,研究分泌分子基础的模型
- 批准号:
8309920 - 财政年份:2011
- 资助金额:
$ 5.3万 - 项目类别:
Drosophila salivary gland, a model for studying the molecular basis of secretion
果蝇唾液腺,研究分泌分子基础的模型
- 批准号:
8189202 - 财政年份:2011
- 资助金额:
$ 5.3万 - 项目类别:
Defining the mechanisms of secretion in the Drosophila salivary gland
定义果蝇唾液腺的分泌机制
- 批准号:
7545565 - 财政年份:2008
- 资助金额:
$ 5.3万 - 项目类别:
Defining the mechanisms of secretion in the Drosophila salivary gland
定义果蝇唾液腺的分泌机制
- 批准号:
7658661 - 财政年份:2008
- 资助金额:
$ 5.3万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 5.3万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 5.3万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 5.3万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 5.3万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 5.3万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 5.3万 - 项目类别: