Molecular Basis of ILK/PINCH Function in Cell Adhesion
ILK/PINCH 细胞粘附功能的分子基础
基本信息
- 批准号:8235954
- 负责人:
- 金额:$ 38.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdhesionsAdhesivesBindingBiochemicalBlood CirculationC-terminalCardiacCell AdhesionCell Adhesion MoleculesCell ShapeCell SurvivalCell physiologyCell-Matrix JunctionCellsCellular biologyClinicalClinical TrialsCollaborationsComplexCytoplasmic TailCytoskeletonDataDilated CardiomyopathyDiseaseExtracellular DomainExtracellular MatrixExtracellular Matrix ProteinsFamilyFocal AdhesionsFunctional disorderG ActinGeneticGoalsHeartHeart DiseasesHeart InjuriesHeart failureHumanIntegrin BindingIntegrinsInvestigationLIM DomainLIMS1 geneLeadLearningLifeLinkMechanicsMediatingMethodsMicrofilamentsModelingMolecularMusMutateMutationMyocardial InfarctionNMR SpectroscopyNaturePathologic ProcessesPathway interactionsPatientsPeptidesPhasePhysiological ProcessesPlayProcessProtein ArrayProtein BindingProtein DynamicsProteinsRecruitment ActivityRegulationReportingRoleScientistSequence AlignmentSeriesSignal PathwaySignal TransductionSiteSite-Directed MutagenesisSpecificityStress FibersStructureTailTestingTherapeutic EffectTimeadhesion processbasecardiac repaircell assemblycell motilitydesignfollow-uphuman diseasein vivoinsightintegrin-linked kinaselink proteinmigrationmouse modelmultidisciplinarymutantnovelpolymerizationprotective effectprotein complexreceptor bindingresearch studyspatiotemporalthree dimensional structurethymosin beta(4)
项目摘要
The attachment of cells to extracellular matrix (ECM) is crucial for a variety of physiological and pathological
processes. This interaction (cell adhesion) is mediated primarily by integrins, a group of heterodimeric
transmembrane receptors that bind to ECM proteins via their extracellular domains. Upon ECM engagement,
integrins cluster and transduce signals into intracellular compartment leading to the formation of large protein
complexes called focal adhesions (FAs) that connect integrin cytoplasmic tails (CTs) to the actin cytoskeleton.
This latter step, i.e., the formation of FAs and their linkage to actin, promotes firm cell adhesion. Furthermore, it
allows regulation of dynamic adhesive processes such as cell spreading and migration. Our long term goal is
to obtain a detailed molecular understanding of FAs and to elucidate how they are connected to actin and
modulated during various adhesive processes. To this end, we have been focusing on a major component of
FAs - integrin-linked kinase (ILK). Originally discovered as an integrin linking protein that binds to integrin ¿
CTs, ILK has been established as a multifunctional protein that transmits diverse mechanical and biochemical
signals between integrins and actin. A key initial step for ILK function is its tight binding to PINCH - a LIM-
containing adaptor. This interaction not only promotes the localization of ILK to integrin adhesion sites but also
creates a stable platform that harbors many proteins to regulate dynamic FA assembly and diverse signaling
pathways. Over the past several years, we have made a major progress towards building a molecular
landscape of the ILK/PINCH network and showed how it functions in a spatiotemporal manner in various
cellular processes. In collaboration with clinical scientists, we have also shown that the ILK/PINCH complex is
abnormally elevated in failing human hearts, suggesting its direct involvement in cardiac dysfunction.
Coincidently, a recent study in mice has shown that a G-actin sequestering peptide, thymosin beta-4 (tb4), may
repair cardiac damage by modulating the ILK/PINCH-mediated cell migration and survival. While this has led to
widespread follow-up investigations and the launching of a tb4-based phase1A clinical trial on treating heart
injury patients, the underlying molecular mechanism remains obscure. In preliminary investigation, we have
discovered a novel ILK/PINCH-mediated integrin-actin linkage that may be crucial for cell migration and
survival. This linkage appears to be dynamically regulated by tb4. In the next phase of our study, we will use
multidisciplinary structural/functional approach to vigorously investigate this linkage and its regulation by tb4.
The studies will lead to a new paradigm for understanding the ILK/PINCH-mediated cell adhesion. They will
also impact on the tb4-based therapy of cardiac disorder and possibly other diseases.
细胞与细胞外基质(ECM)的粘附对于多种生理和病理性疾病至关重要。
流程.这种相互作用(细胞粘附)主要由整合素介导,整合素是一组异二聚体的整合素。
跨膜受体通过其胞外结构域与ECM蛋白结合。在ECM接合时,
整合素聚集并将信号传递到细胞内区室,导致大蛋白质的形成
称为粘着斑(FA)的复合物,其将整联蛋白胞质尾(CT)连接到肌动蛋白细胞骨架。
后一步,即,FA的形成及其与肌动蛋白的连接促进了牢固的细胞粘附。而且
允许调节动态粘附过程,例如细胞扩散和迁移。我们的长期目标是
获得详细的分子理解的脂肪酸,并阐明他们是如何连接到肌动蛋白,
在各种粘合过程中调制。为此,我们一直专注于
FAs -整联蛋白连接激酶(ILK)。最初被发现是一种与整合素结合的整合素连接蛋白。
CT、ILK已被确定为一种多功能蛋白质,可传递多种机械和生化信息
整合素和肌动蛋白之间的信号。ILK功能的关键初始步骤是其与PINCH -一种LIM-的紧密结合。
包含适配器。这种相互作用不仅促进ILK定位于整合素粘附位点,
创建一个稳定的平台,其中包含许多蛋白质来调节动态FA组装和多样化信号传导
途径。在过去的几年里,我们在构建分子生物学方面取得了重大进展。
ILK/PINCH网络的景观,并展示了它如何在各种时空方式中发挥作用
细胞过程在与临床科学家的合作中,我们还表明ILK/PINCH复合物是
在衰竭的人类心脏中异常升高,表明其直接参与心脏功能障碍。
巧合的是,最近的一项小鼠研究表明,G-肌动蛋白螯合肽胸腺素β 4(tb 4)可能
通过调节ILK/PINCH介导的细胞迁移和存活来修复心脏损伤。虽然这导致了
广泛的随访调查和启动基于tb 4的治疗心脏病的1A期临床试验
损伤患者,潜在的分子机制仍然不清楚。在初步调查中,
发现了一种新的ILK/PINCH介导的整合素-肌动蛋白连接,可能对细胞迁移至关重要,
生存这种联系似乎是由tb 4动态调节的。在下一阶段的研究中,我们将使用
多学科的结构/功能的方法,积极研究这种联系和它的调节TB 4。
这些研究将为理解ILK/PINCH介导的细胞粘附提供新的范式。他们将
也影响心脏病和可能的其它疾病的基于TB 4的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JUN QIN其他文献
JUN QIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JUN QIN', 18)}}的其他基金
Cell Adhesion and Signaling in Blood and Vascular Cells
血液和血管细胞中的细胞粘附和信号传导
- 批准号:
10471908 - 财政年份:2021
- 资助金额:
$ 38.86万 - 项目类别:
Project 2- Mechanistic Role of Talin in Cellular Signaling
项目 2 - Talin 在细胞信号转导中的机制作用
- 批准号:
10471913 - 财政年份:2021
- 资助金额:
$ 38.86万 - 项目类别:
Project 2- Mechanistic Role of Talin in Cellular Signaling
项目 2 - Talin 在细胞信号转导中的机制作用
- 批准号:
10268698 - 财政年份:2021
- 资助金额:
$ 38.86万 - 项目类别:
Cell Adhesion and Signaling in Blood and Vascular Cells
血液和血管细胞中的细胞粘附和信号传导
- 批准号:
10661620 - 财政年份:2021
- 资助金额:
$ 38.86万 - 项目类别:
Project 2- Mechanistic Role of Talin in Cellular Signaling
项目 2 - Talin 在细胞信号转导中的机制作用
- 批准号:
10661636 - 财政年份:2021
- 资助金额:
$ 38.86万 - 项目类别:
Signaling Networks of Nuclear Receptor Transcriptional Crosstalk in Lung Cancer
肺癌核受体转录串扰的信号网络
- 批准号:
8898227 - 财政年份:2014
- 资助金额:
$ 38.86万 - 项目类别:
Signaling Networks of Nuclear Receptor Transcriptional Crosstalk in Lung Cancer
肺癌核受体转录串扰的信号网络
- 批准号:
9120927 - 财政年份:2014
- 资助金额:
$ 38.86万 - 项目类别:
Signaling Networks of Nuclear Receptor Transcriptional Crosstalk in Lung Cancer
肺癌核受体转录串扰的信号网络
- 批准号:
8785287 - 财政年份:2014
- 资助金额:
$ 38.86万 - 项目类别:
Molecular Basis of ILK/PINCH Function in Cell Adhesion
ILK/PINCH 细胞粘附功能的分子基础
- 批准号:
7806538 - 财政年份:2009
- 资助金额:
$ 38.86万 - 项目类别:
Molecular Basis of ILK/PINCH Function in Cell Adhesion
ILK/PINCH 细胞粘附功能的分子基础
- 批准号:
7669735 - 财政年份:2009
- 资助金额:
$ 38.86万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 38.86万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 38.86万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 38.86万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 38.86万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 38.86万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 38.86万 - 项目类别:














{{item.name}}会员




