Genetic Regulation of Cardiac Patterning in Zebrafish
斑马鱼心脏模式的遗传调控
基本信息
- 批准号:8258456
- 负责人:
- 金额:$ 38.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAwarenessBiologicalBlood CirculationCardiacCardiac MyocytesCell CountCellsCharacteristicsComprehensionCongenital AbnormalityDataDevelopmentDimensionsDissectionEmbryoEvaluationExplosionFibroblast Growth FactorFirearmsGenesGeneticHeartHeart AtriumIndividualLaboratory ResearchLateral MesodermLightMaintenanceMapsMediatingModelingMyocardiumOrganPathway interactionsPatternPhysiciansPlasticsPlayPopulationProductionPsychological reinforcementRegenerative MedicineRegulationReporterResearchRoleSignal PathwaySignal TransductionStem cellsSurveysTestingTherapeuticTimeTissuesTransgenic OrganismsTubeVentricularWorkZebrafishheart functionimprovedinnovationmigrationnovelprogenitortraittranscription factor
项目摘要
DESCRIPTION (provided by applicant): Organ function relies upon the appropriate attributes of each of its individual operational components. For example, in the embryonic vertebrate heart, effective propulsion of circulation depends upon the distinct morphological, electrophysiological, and contractile traits of the atrial and ventricular chambers. Despite centuries of awareness of the key differences between atrial and ventricular cardiomyocytes, the fundamental mechanisms that allocate cells into chamber-specific lineages and direct chamber-specific differentiation remain largely mysterious. Our laboratory's research focuses on understanding the genetic pathways responsible for chamber fate assignment. By exploiting the utility of the zebrafish as a model organism, we have shown that the BMP and FGF signaling pathways differentially affect atrial and ventricular cell numbers, providing important clues to the mechanisms that initially establish the atrial and ventricular progenitor pools. Furthermore, our preliminary data indicate that initial chamber fate decisions can be plastic and that mechanisms exist to maintain chamber- specific characteristics in differentiated myocardium. Together, our studies suggest an intriguing model in which early patterning of the heart field, followed by later reinforcement of chamber identity, results in proper chamber fate assignment. Here, we propose to evaluate aspects of this model in detail. In Aim 1, we will delve deeper into the mechanisms responsible for the initial establishment of chamber progenitor pools. Specifically, we will use fate mapping, time-lapse tracking, mosaic analysis, and evaluation of candidate effector genes to determine how BMP signaling promotes the establishment of atrial progenitor cells. In Aim 2, we will investigate the mechanisms that maintain chamber identity. Employing transgenic reporters of chamber identity, time-lapse analysis, mosaic analysis, and dissection of chamber-specific regulatory sequences, we will test whether FGF signaling functions to insure maintenance of ventricular chamber identity by promoting expression of nkx genes. Finally, in Aim 3, we will pursue identification of new pathways that regulate chamber fate assignment, taking advantage of our discovery of 4 intriguing compounds that impact atrial or ventricular cardiomyocyte production. Together, our studies will illuminate new features of the network of pathways controlling chamber fate assignment. In the long term, this work has the potential to shed light on the causes of cardiac birth defects and to facilitate innovations in regenerative medicine.
PUBLIC HEALTH RELEVANCE: Effective heart function depends upon the specific dimensions and functional characteristics of the atrial and ventricular cardiac chambers. However, the genetic pathways responsible for creating distinct atrial and ventricular tissues are not well understood. In the long term, a better comprehension of this topic will improve our understanding of the causes of common cardiac birth defects and will suggest strategies for directing chamber-specific differentiation of pluripotent cells for therapeutic purposes.
描述(由申请人提供):器官功能依赖于其每个单独操作组件的适当属性。例如,在脊椎动物胚胎心脏中,有效的循环推进取决于心房和心室的独特形态、电生理和收缩特征。尽管几个世纪以来人们都认识到心房和心室心肌细胞之间的关键差异,但将细胞分配到心室特异性谱系和直接心室特异性分化的基本机制在很大程度上仍然是个谜。 我们实验室的研究重点是了解负责室命运分配的遗传途径。通过利用斑马鱼作为模式生物,我们发现 BMP 和 FGF 信号通路对心房和心室细胞数量有不同的影响,为最初建立心房和心室祖细胞池的机制提供了重要线索。此外,我们的初步数据表明,最初的心室命运决定可以是可塑的,并且存在维持分化心肌中心室特异性特征的机制。总之,我们的研究提出了一个有趣的模型,在该模型中,心脏区域的早期图案化,随后对心室特性的强化,导致正确的心室命运分配。在这里,我们建议详细评估该模型的各个方面。在目标 1 中,我们将更深入地研究负责室祖池初始建立的机制。具体来说,我们将使用命运图谱、延时跟踪、镶嵌分析和候选效应基因评估来确定 BMP 信号如何促进心房祖细胞的建立。在目标 2 中,我们将研究维持腔室特性的机制。利用腔室身份的转基因报告器、延时分析、镶嵌分析和腔室特异性调节序列的解剖,我们将测试 FGF 信号传导功能是否通过促进 nkx 基因的表达来确保维持心室腔室身份。最后,在目标 3 中,我们将利用我们发现的 4 种影响心房或心室心肌细胞生成的有趣化合物,寻求识别调节心室命运分配的新途径。 总之,我们的研究将阐明控制腔室命运分配的路径网络的新特征。从长远来看,这项工作有可能揭示心脏出生缺陷的原因并促进再生医学的创新。
公众健康相关性:有效的心脏功能取决于心房和心室的具体尺寸和功能特征。然而,负责创建不同心房和心室组织的遗传途径尚不清楚。从长远来看,更好地理解这一主题将提高我们对常见心脏出生缺陷原因的理解,并将提出指导多能细胞腔室特异性分化以达到治疗目的的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEBORAH YELON其他文献
DEBORAH YELON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEBORAH YELON', 18)}}的其他基金
Weinstein Cardiovascular Development and Regeneration Conference
韦恩斯坦心血管发育与再生会议
- 批准号:
10683505 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Modulating Morphogenesis: Genetic Regulation of Cardiac Cell Movement in Zebrafish
调节形态发生:斑马鱼心肌细胞运动的遗传调控
- 批准号:
9513941 - 财政年份:2016
- 资助金额:
$ 38.68万 - 项目类别:
Modulating Morphogenesis: Genetic Regulation of Cardiac Cell Movement in Zebrafish
调节形态发生:斑马鱼心肌细胞运动的遗传调控
- 批准号:
9330923 - 财政年份:2016
- 资助金额:
$ 38.68万 - 项目类别:
Genetic Regulation of Outflow Tract Formation in Zebrafish
斑马鱼流出道形成的遗传调控
- 批准号:
8131347 - 财政年份:2011
- 资助金额:
$ 38.68万 - 项目类别:
Regulation of cardiac chamber morphogenesis in zebrafish
斑马鱼心室形态发生的调节
- 批准号:
7072323 - 财政年份:2005
- 资助金额:
$ 38.68万 - 项目类别:
Regulation of cardiac chamber morphogenesis in zebrafish
斑马鱼心室形态发生的调节
- 批准号:
7243460 - 财政年份:2005
- 资助金额:
$ 38.68万 - 项目类别:
Regulation of cardiac chamber morphogenesis in zebrafish
斑马鱼心室形态发生的调节
- 批准号:
7431653 - 财政年份:2005
- 资助金额:
$ 38.68万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 38.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists