Single Molecule Dynamics of mRNA Translation

mRNA 翻译的单分子动力学

基本信息

  • 批准号:
    8531057
  • 负责人:
  • 金额:
    $ 10.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Our goal is exploit the power of single molecule observation to elucidate the mechanism by which specific sequences within mRNA modulate the rate of translation by E. coli ribosomes, through use of an approach coupling Total Internal Reflection Fluorescence Microscopy (TIRFM) with Fluorescence Resonance Energy Transfer (FRET). In our approach, fluorescent groups are introduced in the ribosome that, by FRET interaction with fluorescently-labeled tRNAs, allow initial aminoacyl-tRNA binding to the ribosomal A-site, tRNA translocation to the P-site, and release of discharged tRNA from the E-site to be monitored on single ribosomes in real time. This approach will provide a detailed, continuous kinetic profile of mRNA translation during continuous elongation, providing unique insights into the regulation of translation rates in protein synthesis that are important for cell function. We will determine kinetic profiles for expression of i) short model mRNAs containing known pausing elements regulating translation; ii) complete mRNAs coding for full proteins; and iii) designed mutations of such mRNAs that permit rigorous evaluation of the effects of pausing elements, singly or in groups, in the context of full protein synthesis. Such determinations will allow new understanding of the roles such pauses play in biologically important processes and providing suggestions for optimizing cell-free protein synthesis systems. Our specific aims are to: 1. Determine translation profiles for model mRNAs. We will determine translation kinetic profiles for model mRNAs incorporating known pausing elements (rare codons, downstream mRNA 2o structure, upstream nascent peptides) either one at a time or in tandem. The information obtained will quantify effects of such elements on translation and elucidate the mechanism of the intrinsic ribosomal helicase. 2. Determine translation rates for full-length mRNAs. We will determine translation kinetic profiles for full length mRNAs and specifically designed mutants of such mRNAs in order to determine how surrounding context influences the effect of a given pausing element or group of pausing elements on translation rate, beginning with the mRNAs coding for E. coli dihydrofolate reductase (DHFR) and chloramphenicol acetyltransferase (CATIII). 3. Optimize the reagents employed in the TIRFM-FRET approach. The principal improvements over currently available reagents will be directed toward i. reducing background from fluorescently-labeled tRNA by derivatizing EF-Tu with a fluorescence quencher; ii. synthesizing a larger variety of fluorescent tRNAs; and iii. labeling ribosomes with quantum dots for increased stability toward photobleaching. 4. Optimize the apparatus and methods needed for the TIRFM-FRET approach. Several improvements to the apparatus, software and procedures will be accomplished to enable collection of long kinetic sequences from the onset of elongation, with high fidelity and minimum perturbation by photobleaching. The image processing software used to quantify single molecule FRET pairs and their efficiencies will be improved, optimized and statistically validated. PUBLIC HEALTH RELEVANCE: Three major consequences will flow from our work. First, we will be able to examine the effects of known translational pausing elements in the context of complete protein chain expression, and to determine if new elements and synergistic effects can be identified. Second, we will be able to systematically explore the role translational pausing plays in the integration of protein synthesis and cellular function, focusing on such issues as the tradeoff between speed and accuracy in translation at functionally crucial residues, and the possible coupling of translational pausing and co-translational protein folding. Third, we will be able to provide important information with respect to optimizing cell-free protein translation systems.
描述(由申请人提供):我们的目标是利用单分子观察的能力来阐明mRNA内的特定序列调节E.大肠杆菌核糖体,通过使用耦合全内反射荧光显微镜(TIRFM)与荧光共振能量转移(FRET)的方法。在我们的方法中,荧光基团被引入到核糖体中,通过与荧光标记的tRNA的FRET相互作用,允许初始氨酰-tRNA结合到核糖体A位点,tRNA易位到P位点,以及从E位点释放的释放的tRNA在单个核糖体上被真实的监测。这种方法将提供连续延伸过程中mRNA翻译的详细、连续的动力学曲线,为蛋白质合成中翻译速率的调节提供独特的见解,这对细胞功能至关重要。我们将确定以下表达的动力学特征:i)含有已知的调节翻译的暂停元件的短模型mRNA; ii)编码完整蛋白质的完整mRNA;以及iii)允许在完整蛋白质合成的背景下严格评估暂停元件(单独或成组)的影响的此类mRNA的设计突变。这样的测定将允许新的理解的作用,这样的暂停发挥生物学上重要的过程,并提供建议,优化无细胞蛋白质合成系统。我们的具体目标是:1.确定模型mRNA的翻译谱。我们将确定模型mRNA的翻译动力学曲线,该模型mRNA将已知的暂停元件(稀有密码子、下游mRNA 2 o结构、上游新生肽)一次一个地或串联地并入。所获得的信息将量化这些元素对翻译的影响,并阐明内在核糖体解旋酶的机制。2.确定全长mRNA的翻译速率。我们将确定全长mRNA和专门设计的突变体的翻译动力学曲线,以确定周围环境如何影响给定的暂停元件或暂停元件组对翻译速率的影响,从编码E. coli二氢叶酸还原酶(DHFR)和氯霉素乙酰转移酶(CATIII)。3.优化TIRFM-FRET方法中使用的试剂。对现有试剂的主要改进将针对i.通过用荧光猝灭剂衍生化EF-Tu来减少来自荧光标记的tRNA的背景; ii.合成更多种类的荧光tRNA;以及iii.用量子点标记核糖体以增加对光漂白的稳定性。4.优化TIRFM-FRET方法所需的设备和方法。将完成对设备、软件和程序的几项改进,以使从伸长开始收集长的动力学序列,具有高保真度和最小的光漂白扰动。用于定量单分子FRET对的图像处理软件及其效率将得到改进、优化和统计学验证。公共卫生相关性:我们的工作将产生三大后果。首先,我们将能够检查已知的翻译暂停元素在完整的蛋白质链表达的背景下的影响,并确定是否可以确定新的元素和协同效应。其次,我们将能够系统地探索翻译暂停在蛋白质合成和细胞功能整合中的作用,重点关注功能关键残基翻译速度和准确性之间的权衡,以及翻译暂停和共翻译蛋白质折叠的可能耦合等问题。第三,我们将能够提供关于优化无细胞蛋白质翻译系统的重要信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BARRY S. COOPERMAN其他文献

BARRY S. COOPERMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BARRY S. COOPERMAN', 18)}}的其他基金

Catalytic roles of RNA methyltransferase DIMT1
RNA甲基转移酶DIMT1的催化作用
  • 批准号:
    10522085
  • 财政年份:
    2022
  • 资助金额:
    $ 10.16万
  • 项目类别:
Catalytic roles of RNA methyltransferase DIMT1
RNA甲基转移酶DIMT1的催化作用
  • 批准号:
    10643980
  • 财政年份:
    2022
  • 资助金额:
    $ 10.16万
  • 项目类别:
Fluorescent tRNAs for Real-Time Monitoring of Protein Synthesis in Living Cells
用于实时监测活细胞中蛋白质合成的荧光 tRNA
  • 批准号:
    8001799
  • 财政年份:
    2010
  • 资助金额:
    $ 10.16万
  • 项目类别:
Single Molecule Dynamics of mRNA Translation
mRNA 翻译的单分子动力学
  • 批准号:
    7904251
  • 财政年份:
    2008
  • 资助金额:
    $ 10.16万
  • 项目类别:
Single Molecule Dynamics of mRNA Translation
mRNA 翻译的单分子动力学
  • 批准号:
    7526959
  • 财政年份:
    2008
  • 资助金额:
    $ 10.16万
  • 项目类别:
Single Molecule Dynamics of mRNA Translation
mRNA 翻译的单分子动力学
  • 批准号:
    8504025
  • 财政年份:
    2008
  • 资助金额:
    $ 10.16万
  • 项目类别:
Single Molecule Dynamics of mRNA Translation
mRNA 翻译的单分子动力学
  • 批准号:
    7666905
  • 财政年份:
    2008
  • 资助金额:
    $ 10.16万
  • 项目类别:
Single Molecule Dynamics of mRNA Translation
mRNA 翻译的单分子动力学
  • 批准号:
    9102133
  • 财政年份:
    2008
  • 资助金额:
    $ 10.16万
  • 项目类别:
Single Molecule Dynamics of mRNA Translation
mRNA 翻译的单分子动力学
  • 批准号:
    8127776
  • 财政年份:
    2008
  • 资助金额:
    $ 10.16万
  • 项目类别:
Single Molecule Dynamics of mRNA Translation
mRNA 翻译的单分子动力学
  • 批准号:
    8708889
  • 财政年份:
    2008
  • 资助金额:
    $ 10.16万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 10.16万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 10.16万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.16万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.16万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.16万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 10.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 10.16万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 10.16万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 10.16万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 10.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了