ATF4 and Osteoclastogenesis
ATF4 和破骨细胞生成
基本信息
- 批准号:7934889
- 负责人:
- 金额:$ 22.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAddressAdverse effectsAlbers-Schonberg diseaseAnimalsBindingBiochemicalBiological AssayBone DiseasesBone MarrowBone PainBone ResorptionBone necrosisBone remodelingBreastCellsCoculture TechniquesComplement component C1sDataDefectDevelopmentDiseaseDisseminated Malignant NeoplasmEquilibriumEventGene ExpressionGenesHeterodimerizationHypercalcemiaHypercalcemia of MalignancyIn VitroJawLifeLungLytic Metastatic LesionMacrophage Colony-Stimulating FactorMalignant NeoplasmsMediatingMessenger RNAMolecularMultiple MyelomaMusOsteitis DeformansOsteoblastsOsteoclastsOsteoporosisPI3K/AKTPathogenesisPathway interactionsPatientsPhosphorylationPhosphorylation SitePlayPreventionProstateProteinsProto-Oncogene Proteins c-aktRegulationRheumatoid ArthritisRoleSignal TransductionSkeletal DevelopmentTNF Receptor-Associated FactorsTRANCE proteinTransgenic MiceTransgenic Organismsactivating transcription factor 4basebisphosphonatebonedesignimprovedin vivomacrophagemonocytemouse modelnuclear factors of activated T-cellsosteoclastogenesisoverexpressionpamidronateprecursor cellpromoterpublic health relevancereceptorresearch studyskeletaltartrate-resistant acid phosphatasetranscription factor
项目摘要
DESCRIPTION (provided by applicant): Osteoclasts (OCLs) are the only bone-resorbing cells that are essential for normal skeletal development and bone remodeling throughout life. Abnormal OCL number and/or activity result in a number of bone diseases such as osteoporosis, Paget's disease of bone, metastatic osteolytic lesions, and rheumatoid arthritis. However, the molecular mechanisms underlying osteoclastogenesis are not well understood. Our preliminary studies demonstrate that activating transcription factor 4 (ATF4) is a key factor that regulates osteoclastogenesis. Our data indicate that ATF4 mediates M-CSF-induced expression of RANK, a critical molecular event required for early differentiation of OCLs. Furthermore, ATF4 directs RANKL-dependent gene expression of NFATc1, a master regulator of OCL differentiation. In this study, we hypothesize that ATF4 plays a critical role in regulating osteoclastogenesis by two distinct mechanisms: 1) ATF4 modulates M-CSF induction of RANK expression via PI3K/AKT-dependent phosphorylation and protein stabilization and/or activation; 2) ATF4 mediates RANKL induction of NFATc1 gene by binding to the NFATc1 gene P1 promoter via interactions with other key factors. To address our hypothesis, we will pursue the following specific aims: Aim 1 will confirm that ATF4 is phosphorylated and up-regulated by M-CSF signaling via PI3K/AKT in OCL precursors. We will identify the AKT and M-CSF responsive phosphorylation site(s) and assess their functional significance in regulating ATF4 protein stability and activity in support of osteoclastogenesis. Aim 2 will determine whether ATF4 mediates RANKL induction of the NFATc1 gene via cooperative interaction with other key factors on the NFATc1 gene P1 promoter. We will also identify ATF4 heterodimerization partners and assess the functional significance of interactions between ATF4 and partners in RANKL-induced NFATc1 expression. Aim 3 will determine whether OCL-specific transgenic expression of NFATc1 can rescue the defect in OCL differentiation in Atf4-/- mice. We will use transgenic mice in which the mouse tartrate-resistant acid phosphatase (TRAP) gene promoter drives the expression of a constitutively active form of NFATc1 (NFATc1-CA) selectively in OCLs in Atf4-/- mice. Biochemical and histomorphometric parameters for OCL differentiation and bone resorption will be determined in the following mice groups: i) wt, ii) NFATc1- CA-tg, iii) Atf4-/-, and iv) Atf4-/-; NFATc1-CA-tg. Successful completion of these proposed aims will 1) significantly advance understanding of the molecular mechanisms underlying OCL differentiation, and 2) provide a molecular basis for development of new and more specific antiresorptive agents for treating patients with devastating osteoporosis, hypercalcemia of malignancy, and Paget's disease of bone.
PUBLIC HEALTH RELEVANCE: Skeletal integrity requires a delicate balance between bone-forming osteoblasts and bone-resorbing osteoclasts (OCLs). Abnormally increased OCL number and/or activity result in a number of bone diseases such as osteoporosis, osteolytic lesions induced by many metastatic cancers, Paget's disease of bone, and rheumatoid arthritis. Conversely, reduced OCL number and/or activity causes osteopetrosis, a disorder characterized by significantly increased skeletal mass. Defining the molecular mechanisms underlying osteoclastogenesis is essential to advance understanding of the molecular basis for the pathogenesis of OCL-based or involved bone diseases and improve the prevention and treatment of these diseases. We demonstrate that ATF4 is a key transcription factor for osteoclastogenesis and present data revealing its importance in the regulation of both early and late OCL differentiation. ATF4 plays an intrinsic role in OCL precursors that is indispensable for RANKL-induced OCL differentiation. The important role of ATF4 in osteoclastogenesis is underscored by its requirements for M-CSF-induced RANK gene expression, a key molecular event for early OCL differentiation, as well as for RANKL-induced NFATc1 gene expression, required for OCL differentiation. This proposal intends to elucidate the mechanisms whereby M-CSF activates/upregulates ATF4 via the PI3K/AKT pathway, to examine how ATF4 mediates RANKL induction of NFATc1 via activation of the NFATc1 gene P1 promoter, and to assess the importance of ATF4 in OCL differentiation in vivo using a specific NFATc1-CA transgenic mouse model. The information obtained from these studies will significantly enhance our understanding of the molecular mechanism involved in normal osteoclastogenesis and bone resorption during skeletal development and throughout life. Furthermore, bisphosphonates (zolendronic acid and pamidronate), the most widely prescribed antiresorptive agents that are intravenously administrated to reduce bone pain, hypercalcemia and skeletal complications in patients with multiple myeloma, breast, prostate, lung and other cancers and Paget's disease of bone, have a severe side effect called bisphosphonate- associated osteonecrosis of the jaw via undefined mechanism(s). Successful completion of this study will provide a molecular basis for the development of new and more specific antiresorptive agents for treating these devastating diseases.
描述(由申请人提供):破骨细胞(OCL)是唯一的骨吸收细胞,在整个生命过程中对正常骨骼发育和骨重建至关重要。异常的OCL数量和/或活性导致许多骨疾病,例如骨质疏松症、骨的佩吉特病、转移性溶骨性病变和类风湿性关节炎。然而,破骨细胞发生的分子机制还不清楚。我们的初步研究表明,激活转录因子4(ATF 4)是一个关键因素,调节破骨细胞的形成。我们的数据表明,ATF 4介导M-CSF诱导的RANK表达,这是OCL早期分化所需的关键分子事件。此外,ATF 4指导OCL分化的主要调节因子NFATc 1的RANKL依赖性基因表达。在本研究中,我们假设ATF 4通过两种不同的机制在调节破骨细胞生成中发挥关键作用:1)ATF 4通过PI 3 K/AKT依赖性磷酸化和蛋白质稳定和/或活化调节M-CSF诱导RANK表达; 2)ATF 4通过与其他关键因子相互作用结合NFATc 1基因P1启动子介导RANKL诱导NFATc 1基因。为了解决我们的假设,我们将追求以下具体目标:目标1将证实ATF 4被磷酸化,并通过OCL前体中的PI 3 K/AKT被M-CSF信号转导上调。我们将鉴定AKT和M-CSF反应性磷酸化位点,并评估它们在调节ATF 4蛋白稳定性和活性以支持破骨细胞生成中的功能意义。目的2将确定ATF 4是否通过与NFATc 1基因P1启动子上的其他关键因子的协同相互作用介导NFATc 1基因的RANKL诱导。我们还将鉴定ATF 4异源二聚化伴侣,并评估ATF 4和伴侣在RANKL诱导的NFATc 1表达中相互作用的功能意义。目的3:研究OCL特异性转基因表达NFATc 1是否能挽救Atf 4-/-小鼠OCL分化缺陷。我们将使用转基因小鼠,其中小鼠抗酒石酸酸性磷酸酶(TRAP)基因启动子驱动Atf 4-/-小鼠的OCL中选择性表达组成型活性形式的NFATc 1(NFATc 1-CA)。将在以下小鼠组中测定OCL分化和骨吸收的生化和组织形态学参数:i)wt,ii)NFATc 1- CA-tg,iii)Atf 4-/-和iv)Atf 4-/-; NFATc 1-CA-tg。这些目标的成功实现将1)显著地促进对OCL分化的分子机制的理解,和2)为开发新的和更特异性的抗吸收剂提供分子基础,用于治疗患有破坏性骨质疏松症、恶性高钙血症和佩吉特骨疾病的患者。
公共卫生相关性:骨骼完整性需要骨形成成骨细胞和骨吸收破骨细胞(OCL)之间的微妙平衡。异常增加的OCL数量和/或活性导致许多骨疾病,例如骨质疏松症、由许多转移性癌症诱导的溶骨性病变、骨的佩吉特病和类风湿性关节炎。相反,OCL数量和/或活性的减少会导致骨硬化症,这是一种以骨骼质量显著增加为特征的疾病。明确破骨细胞生成的分子机制对于深入了解OCL相关或相关骨疾病的发病机制以及改善这些疾病的预防和治疗至关重要。我们证明了ATF 4是破骨细胞生成的关键转录因子,目前的数据揭示了其在早期和晚期OCL分化调控中的重要性。ATF 4在OCL前体中发挥内在作用,这对于RANKL诱导的OCL分化是不可或缺的。ATF 4在破骨细胞生成中的重要作用通过其对M-CSF诱导的RANK基因表达(早期OCL分化的关键分子事件)以及RANKL诱导的NFATc 1基因表达(OCL分化所需)的需求来强调。本提案旨在阐明M-CSF通过PI 3 K/AKT途径激活/上调ATF 4的机制,以检查ATF 4如何通过激活NFATc 1基因P1启动子介导RANKL诱导NFATc 1,并使用特定的NFATc 1-CA转基因小鼠模型评估ATF 4在体内OCL分化中的重要性。从这些研究中获得的信息将显着提高我们的理解,在骨骼发育和整个生命过程中的正常破骨细胞和骨吸收的分子机制。此外,双膦酸盐(唑来膦酸和帕米膦酸盐)是最广泛处方的抗吸收剂,其静脉内施用以减少多发性骨髓瘤、乳腺癌、前列腺癌、肺癌和其它癌症以及佩吉特骨疾病患者的骨痛、高钙血症和骨骼并发症,其具有严重的副作用,称为双膦酸盐相关的颌骨骨坏死,其机制不明确。这项研究的成功完成将为开发新的和更具体的抗吸收剂治疗这些破坏性疾病提供分子基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guozhi Xiao其他文献
Guozhi Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guozhi Xiao', 18)}}的其他基金
Role of ATF-4 in the Anabolic Actions of PTH on Bone
ATF-4 在 PTH 对骨的合成代谢作用中的作用
- 批准号:
8494396 - 财政年份:2007
- 资助金额:
$ 22.64万 - 项目类别:
Role of ATF-4 in the Anabolic Actions of PTH on Bone
ATF-4 在 PTH 对骨的合成代谢作用中的作用
- 批准号:
7258603 - 财政年份:2007
- 资助金额:
$ 22.64万 - 项目类别:
Role of ATF-4 in the Anabolic Actions of PTH on Bone
ATF-4 在 PTH 对骨的合成代谢作用中的作用
- 批准号:
8055518 - 财政年份:2007
- 资助金额:
$ 22.64万 - 项目类别:
Role of ATF-4 in the Anabolic Actions of PTH on Bone
ATF-4 在 PTH 对骨的合成代谢作用中的作用
- 批准号:
7408071 - 财政年份:2007
- 资助金额:
$ 22.64万 - 项目类别:
Role of ATF-4 in the Anabolic Actions of PTH on Bone
ATF-4 在 PTH 对骨的合成代谢作用中的作用
- 批准号:
7777476 - 财政年份:2007
- 资助金额:
$ 22.64万 - 项目类别:
Role of ATF-4 in the Anabolic Actions of PTH on Bone
ATF-4 在 PTH 对骨的合成代谢作用中的作用
- 批准号:
7611989 - 财政年份:2007
- 资助金额:
$ 22.64万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.64万 - 项目类别:
Research Grant