Nanopatterned Surfaces to Control Cell Fate
控制细胞命运的纳米图案表面
基本信息
- 批准号:8000255
- 负责人:
- 金额:$ 10.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-01-14 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdherent CultureAdhesionsAnimalsAreaBehavior ControlBiologicalCell AdhesionCell Culture TechniquesCell Fate ControlCell ShapeCell SurvivalCellsClinicalCollectionConditioned Culture MediaCongestive Heart FailureCulture MediaDevelopmentDiabetes MellitusDisadvantagedDiseaseEmbryoEngineeringEnvironmentExhibitsExtracellular Matrix ProteinsFocal AdhesionsGrowthHumanIn SituIntegrinsLigandsMethodsModelingMorphologyMusNuclearParkinson DiseasePatientsPeptidesPharmaceutical PreparationsPhenotypeProductionProtein BiosynthesisProtocols documentationRegenerative MedicineReproducibilityRiskScreening procedureShapesSignal TransductionSiteSourceSpinal cord injuryStem cellsSurfaceSystemTechnologyTestingTissue EngineeringTissuesTreatment EfficacyZoonosesbasecell typechemotherapydensityhuman embryonic stem cellhuman embryonic stem cell linelarge scale productionleukemiananopatternneuronal cell bodynovelpathogenphysical statepublic health relevanceself-renewalstemstem cell differentiationstem cell populationtransmission process
项目摘要
DESCRIPTION (provided by applicant): Human embryonic stem (hES) cells are being studied as potential source of cells for the treatment of many diseases (e.g. diabetes, spinal cord injury, Parkinson's, leukemia, congestive heart failure, etc.). These same cells are also being touted an ideal cell source for ex vivo tissue engineering or in situ regenerative medicine. The successful integration of hES cell into such therapies will hinge upon three critical steps: 1) stem cell expansion in number without differentiation (i.e., self-renewal); 2) directed differentiation into a specific cell type or collection of cell types; and, 3) cell survival and promotion of their functional integration into existing tissue. Precisely controlling each of these steps will be essential to maximize the hES cell's therapeutic efficacy. However, it is difficult to precisely control the behavior of hES cells, since environmental conditions for self-renewal and differentiation are poorly understood. We propose to develop a tunable completely synthetic surface and chemically defined media to control the self-renewal/expansion of hES cells. If hES cells can be derived and maintained within a completely synthetic environment, then it will be possible to eliminate pathogen transmission associated with animal-derived materials, provide a scalable basis for large-scale production of hES cells, and provide a precise base for further development to control hES cell differentiation. This application will develop materials to address the hypothesis that the contractile state of a hES cell, manifested by nuclear shape morphology via integrin engagement, regulates hES cell self-renewal. Our hypothesis is centered on a common mechanism by which cells respond differentially to either materials with variable moduli or materials that spatially confine a cell's shape via adhesion site distribution. We propose that a common mechanism that controls hES cell self-renewal and cell fate determination is the contractile state of the cell manifested by nuclear morphology, and integrin engagement and clustering. Thus, we wish to explore the spatial arrangement of cell adhesion domains (i.e., their size, number/cell body, and spatial arrangement) and assess their effect on the self-renewal of hES cells. We propose that altering the physical state of a pluripotent hES cell, via spatial clustering of its adhesions with a surface, will influence self-renewal and differentiation to a specific phenotype. The following specific aims are proposed. Specific Aim 1: To develop and characterize nanopatterned cell culture substrata where the size, peptide ligand density, number/cell body, and spatial arrangement of integrin-engaging domains will be varied to control cell and colony morphology. Specific Aim 2: To evaluate the nanopatterned substrata to support the long-term growth (5-10 passages) of human ES cells in chemically-defined media. PUBLIC HEALTH RELEVANCE: This application will focus specifically on engineering a tunable and well-defined environment presenting hES cells with a completely synthetic cell culture surface and chemically-defined media to promote self-renewal. The result will be a synthetic microenvironment that can both serve as a regenerative medicine technology platform for large scale hES cell expansion, as well as provide a novel and highly modular system for dissecting basic signaling mechanisms underlying hES cell self-renewal.
描述(由申请人提供):人类胚胎干细胞(hES)正在被研究作为治疗许多疾病(如糖尿病、脊髓损伤、帕金森氏症、白血病、充血性心力衰竭等)的潜在细胞来源。这些相同的细胞也被吹捧为离体组织工程或原位再生医学的理想细胞来源。将hES细胞成功整合到此类治疗中将取决于三个关键步骤:1)干细胞数量扩增而不分化(即自我更新);2)定向分化为特定的细胞类型或细胞类型的集合;3)细胞存活并促进其与现有组织的功能整合。精确控制这些步骤对于最大化hES细胞的治疗效果至关重要。然而,由于对hES细胞自我更新和分化的环境条件知之甚少,因此很难精确控制其行为。我们建议开发一种可调的完全合成表面和化学定义的介质来控制hES细胞的自我更新/扩增。如果能够在完全合成的环境中获得并维持hES细胞,那么将有可能消除与动物源性材料相关的病原体传播,为大规模生产hES细胞提供可扩展的基础,并为进一步开发控制hES细胞分化提供精确的基础。该应用程序将开发材料来解决一个假设,即he细胞的收缩状态,通过整合素参与的核形状形态表现出来,调节了he细胞的自我更新。我们的假设集中在一种共同的机制上,通过这种机制,细胞对具有可变模量的材料或通过粘附位点分布在空间上限制细胞形状的材料的反应不同。我们提出控制hES细胞自我更新和决定细胞命运的共同机制是细胞的收缩状态,表现为核形态,整合素的参与和聚集。因此,我们希望探索细胞粘附域的空间排列(即它们的大小、数量/细胞体和空间排列),并评估它们对hES细胞自我更新的影响。我们提出,改变多能性hES细胞的物理状态,通过其粘附表面的空间聚类,将影响自我更新和分化到特定表型。提出以下具体目标。具体目标1:开发和表征纳米模式细胞培养基质,其中大小、肽配体密度、细胞数量/细胞体和整合素参与域的空间排列将会改变,以控制细胞和集落形态。具体目标2:评估纳米化基质在化学定义的培养基中支持人类胚胎干细胞长期生长(5-10代)的能力。公共卫生相关性:该应用程序将特别侧重于设计一个可调和明确定义的环境,为hES细胞提供完全合成的细胞培养表面和化学定义的培养基,以促进自我更新。结果将是一个合成微环境,既可以作为大规模he细胞扩增的再生医学技术平台,也可以为剖析he细胞自我更新的基本信号机制提供一个新颖且高度模块化的系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN Edward HEALY其他文献
KEVIN Edward HEALY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN Edward HEALY', 18)}}的其他基金
Microphysiological systems to interrogate the Islet-Liver-Adipose Axis in normal physiology and Type-2 Diabetes Mellitus
用于询问正常生理和 2 型糖尿病中的胰岛-肝脏-脂肪轴的微生理系统
- 批准号:
10216389 - 财政年份:2018
- 资助金额:
$ 10.53万 - 项目类别:
Microphysiological systems to interrogate the Islet-Liver-Adipose Axis in normal physiology and Type-2 Diabetes Mellitus
用于询问正常生理和 2 型糖尿病中的胰岛-肝脏-脂肪轴的微生理系统
- 批准号:
10462610 - 财政年份:2018
- 资助金额:
$ 10.53万 - 项目类别:
Microphysiological systems to interrogate the Islet-Liver-Adipose Axis in normal physiology and Type-2 Diabetes Mellitus
用于询问正常生理和 2 型糖尿病中的胰岛-肝脏-脂肪轴的微生理系统
- 批准号:
10224184 - 财政年份:2018
- 资助金额:
$ 10.53万 - 项目类别:
Human heart-on-a-chip for screening cardiomyopathy and chemotherapeutic cardiotoxicity
用于筛查心肌病和化疗心脏毒性的人类心脏芯片
- 批准号:
9240184 - 财政年份:2017
- 资助金额:
$ 10.53万 - 项目类别:
iPSC Derived Cardiac Microchambers for Embryonic Drug Screening
iPSC 衍生的心脏微室用于胚胎药物筛选
- 批准号:
9068913 - 财政年份:2015
- 资助金额:
$ 10.53万 - 项目类别:
iPSC Derived Cardiac Microchambers for Embryonic Drug Screening
iPSC 衍生的心脏微室用于胚胎药物筛选
- 批准号:
8953685 - 财政年份:2015
- 资助金额:
$ 10.53万 - 项目类别:
Matrix assisted cell transplantation of brown fat
基质辅助棕色脂肪细胞移植
- 批准号:
8776672 - 财政年份:2014
- 资助金额:
$ 10.53万 - 项目类别:
Matrix assisted cell transplantation of brown fat
基质辅助棕色脂肪细胞移植
- 批准号:
9304213 - 财政年份:2014
- 资助金额:
$ 10.53万 - 项目类别:
Multivalent Conjugates for Enhanced Bioactivity of Growth Factor Based Therapies
用于增强生长因子疗法的生物活性的多价缀合物
- 批准号:
8544176 - 财政年份:2012
- 资助金额:
$ 10.53万 - 项目类别:
Disease-Specific Integrated Microphysiological Human Tissue Models
疾病特异性综合微生理人体组织模型
- 批准号:
8768902 - 财政年份:2012
- 资助金额:
$ 10.53万 - 项目类别:
相似海外基金
Probe-type nanowire sensor for label-free, in-situ, ultrasensitive detection of biomarkers from single cell in adherent culture
探针型纳米线传感器,用于无标记、原位、超灵敏地检测贴壁培养中单细胞的生物标志物
- 批准号:
21K14653 - 财政年份:2021
- 资助金额:
$ 10.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Rolled Scaffold for High-Density Adherent Culture of Mammalian Cells
职业:用于哺乳动物细胞高密度贴壁培养的滚动支架
- 批准号:
1848251 - 财政年份:2019
- 资助金额:
$ 10.53万 - 项目类别:
Continuing Grant














{{item.name}}会员




