Identification of genetic pathways that regulate neuronal circuits in C. elegans
鉴定调节线虫神经元回路的遗传途径
基本信息
- 批准号:8456849
- 负责人:
- 金额:$ 4.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-12-01 至 2015-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimalsBehaviorBehavioralBiological ModelsBrainCaenorhabditis elegansCalciumCandidate Disease GeneCell Adhesion MoleculesCellsCholinergic ReceptorsConvulsionsDataDevelopmentDiseaseElectron MicroscopyEpidermisEpilepsyEquilibriumFingersFrequenciesFunctional disorderFutureGene MutationGenesGeneticGenetic TechniquesGoalsHomologous GeneHumanImageIon ChannelKnock-in MouseKnock-outLearningLightLocomotionMapsMediatingMemoryMicroscopyMolecularMorphologyMutateMutationNematodaNerveNervous system structureNeurogliaNeuronsPathway interactionsPhenotypePhysiologicalPopulationProcessRNA InterferenceRegulationRodent ModelSchizophreniaSeizuresSocial BehaviorSynapsesTimeTissuesWhole Organismautism spectrum disorderbasecholinergicdesigneffective therapygain of function mutationloss of functionloss of function mutationmutantnervous system disorderneural circuitneuroligin 1neuropsychologicalnew therapeutic targetnovelpreventreceptorrelating to nervous systemsynaptic function
项目摘要
DESCRIPTION (provided by applicant): Many neurological disorders are associated with genetic mutations that affect neuronal activity and synapse function. Understanding how these genes regulate normal circuit function will have profound impact on the management of such diseases. In addition to neurons, the brain contains nearly ten times as many non-neuronal glial cells, which support neuronal function and regulate excitation/inhibition balance. The studies of mammalian model systems are hindered by this cellular and genetic complexity of the mammalian brain. The use of a simple, whole organism model system has the advantages of reducing the cellular complexity, while maintaining the neuronal and non-neuronal connectivity under physiological conditions. The overall goal of this project is to uncover the mechanisms by which non-neuronal cells modulate neuronal excitation/inhibition balance. The roundworm, Caenorhabditis elegans, will be utilized as a model system for four main reasons: 1) its neuronal networks are formed and maintained through mechanisms that are conserved in humans, 2) it has a simple, fully mapped nervous system, 3) it is easy to manipulate through genetic techniques, and 4) it has well-conserved homologs to genes mutated in autism spectrum disorders and epilepsy. The goals of this study will be accomplished through the following specific aims: Aim 1: Identify genetic pathways in non-neuronal cells that regulate neuronal excitation/inhibition imbalance using an RNA- interference screen. Aim 2: Characterize the physical interactions between neurons and non-neuronal cells under excitation/inhibition imbalanced conditions utilizing a genetic approach to fluorescently tag cellular interactions. Aim 3: Determine whether modulation of non-neuronal cells can prevent excitation/inhibition imbalance caused by mutations in autism spectrum disorder genes. The completion of this application will provide a deeper understanding of the interactions between neurons and the surrounding non-neuronal cells under physiological and pathological conditions. Additionally, this study will uncover the pathogenic mechanism(s) of neurological disorders that affect synaptic functions, such as autism spectrum disorders or epilepsy. Finally, this project will provide potential targets for novel therapies for the treatment of autism spectrum disorders, epilepsy, and related neurological diseases.
PUBLIC HEALTH RELEVANCE: Neural circuit activity imbalance underlies many forms of neurological disease, such as autism spectrum disorders, epilepsy, and schizophrenia, which affect nearly 3% of the population; however, there are no cures or long-term therapies. This project will uncover mechanisms that underlie neural circuit regulation, will shed further light onto our understanding of the disease process, and will provide new therapeutic targets for future treatments.
描述(申请人提供):许多神经疾病与影响神经元活动和突触功能的基因突变有关。了解这些基因如何调节正常的电路功能,将对此类疾病的管理产生深远的影响。除了神经元,大脑中还含有近十倍数量的非神经元胶质细胞,这些细胞支持神经元功能,调节兴奋/抑制平衡。哺乳动物大脑的这种细胞和遗传复杂性阻碍了对哺乳动物模型系统的研究。使用简单的整体生物模型系统具有降低细胞复杂性的优点,同时在生理条件下保持神经元和非神经元的连通性。该项目的总体目标是揭示非神经元细胞调节神经元兴奋/抑制平衡的机制。线虫秀丽线虫将被用作模型系统,主要有四个原因:1)它的神经元网络是通过人类保守的机制形成和维持的,2)它有一个简单的、完整的神经系统,3)它很容易通过基因技术进行操作,以及4)它与自闭症谱系障碍和癫痫中突变的基因具有很好的保守性同源物。这项研究的目标将通过以下具体目标来实现:目标1:利用RNA干扰筛选确定非神经细胞中调节神经元兴奋/抑制失衡的遗传途径。目的2:利用荧光标记细胞相互作用的遗传学方法,表征兴奋/抑制失衡条件下神经元和非神经元细胞之间的物理相互作用。目的3:确定非神经细胞的调节是否能防止自闭症谱系障碍基因突变引起的兴奋/抑制失衡。这一应用的完成将使人们更深入地了解神经元与周围非神经元细胞在生理和病理条件下的相互作用。此外,这项研究将揭示影响突触功能的神经疾病的致病机制(S),如自闭症谱系障碍或癫痫。最后,该项目将为治疗自闭症谱系障碍、癫痫和相关神经疾病的新疗法提供潜在的目标。
与公共卫生相关:神经回路活动失衡是许多形式的神经疾病的基础,例如自闭症谱系障碍、癫痫和精神分裂症,这些疾病影响了近3%的人口;然而,没有治愈或长期治疗的方法。该项目将揭示神经回路调节的基础机制,将进一步阐明我们对疾病过程的理解,并将为未来的治疗提供新的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salvatore James Cherra其他文献
Salvatore James Cherra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Salvatore James Cherra', 18)}}的其他基金
Regulation of synapse development by small GTPase cascades in Caenorhabditis elegans
秀丽隐杆线虫中小 GTP 酶级联对突触发育的调节
- 批准号:
10735077 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别:
Understanding the molecular mechanisms that maintain excitation-inhibition balance in neural circuits
了解维持神经回路兴奋抑制平衡的分子机制
- 批准号:
9164281 - 财政年份:2016
- 资助金额:
$ 4.71万 - 项目类别:
Understanding the molecular mechanisms that maintain excitation-inhibition balance in neural circuits
了解维持神经回路兴奋抑制平衡的分子机制
- 批准号:
10054203 - 财政年份:2016
- 资助金额:
$ 4.71万 - 项目类别:
Identification of genetic pathways that regulate neuronal circuits in C. elegans
鉴定调节线虫神经元回路的遗传途径
- 批准号:
8775704 - 财政年份:2012
- 资助金额:
$ 4.71万 - 项目类别:
Identification of genetic pathways that regulate neuronal circuits in C. elegans
鉴定调节线虫神经元回路的遗传途径
- 批准号:
8576399 - 财政年份:2012
- 资助金额:
$ 4.71万 - 项目类别:
PINK1 in the Regulation of Macroautophagy and Parkinsonian Neurodegeneration.
PINK1 在巨自噬和帕金森神经变性的调节中的作用。
- 批准号:
8071041 - 财政年份:2009
- 资助金额:
$ 4.71万 - 项目类别:
PINK1 in the Regulation of Macroautophagy and Parkinsonian Neurodegeneration.
PINK1 在巨自噬和帕金森神经变性的调节中的作用。
- 批准号:
7791374 - 财政年份:2009
- 资助金额:
$ 4.71万 - 项目类别:
PINK1 in the Regulation of Macroautophagy and Parkinsonian Neurodegeneration.
PINK1 在巨自噬和帕金森神经变性的调节中的作用。
- 批准号:
7614733 - 财政年份:2009
- 资助金额:
$ 4.71万 - 项目类别:
相似海外基金
CAREER: Next-generation of Wirelessly Powered Implantable Neuromodulation and Electrophysiological Recording System for Long-term Behavior Study of Freely-Moving Animals
职业:下一代无线供电植入式神经调节和电生理记录系统,用于自由移动动物的长期行为研究
- 批准号:
2309413 - 财政年份:2022
- 资助金额:
$ 4.71万 - 项目类别:
Continuing Grant
Developing remote monitoring system of aquatic animals' behavior and ecology to reform ecosystem conservation
开发水生动物行为和生态远程监测系统改革生态系统保护
- 批准号:
22K18432 - 财政年份:2022
- 资助金额:
$ 4.71万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
OCE-PRF: Cliff Hangers: Investigating Effects of a Submarine Canyon on the Distribution and Behavior of Midwater Animals and their Predators
OCE-PRF:悬崖吊架:调查海底峡谷对中层水域动物及其捕食者的分布和行为的影响
- 批准号:
2126537 - 财政年份:2021
- 资助金额:
$ 4.71万 - 项目类别:
Standard Grant
CAREER: Next-generation of Wirelessly Powered Implantable Neuromodulation and Electrophysiological Recording System for Long-term Behavior Study of Freely-Moving Animals
职业:下一代无线供电植入式神经调节和电生理记录系统,用于自由移动动物的长期行为研究
- 批准号:
1943990 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Continuing Grant
Study on factors that increase or decrease the vigilance behavior of wild animals: the effect of species differences and visual stimuli
野生动物警觉行为增减因素研究:物种差异和视觉刺激的影响
- 批准号:
20K06353 - 财政年份:2020
- 资助金额:
$ 4.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neural circuit underlying flexible behavior in animals
动物灵活行为的神经回路
- 批准号:
19H01769 - 财政年份:2019
- 资助金额:
$ 4.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of adaptive mechanisms in chemical localization behavior of animals by using novel devices to intervene in sensory and motor functions
使用新型装置干预感觉和运动功能来分析动物化学定位行为的适应性机制
- 批准号:
19H02104 - 财政年份:2019
- 资助金额:
$ 4.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life Cost Strategy for Wild Animals Using Wearable Behavior Recording Devices and Telomere Measurement
使用可穿戴行为记录设备和端粒测量的野生动物生命成本策略
- 批准号:
18K14788 - 财政年份:2018
- 资助金额:
$ 4.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Modeling and application of energy-efficient behavior in calling animals
动物呼叫节能行为建模及应用
- 批准号:
18K18005 - 财政年份:2018
- 资助金额:
$ 4.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Cooperative behavior of non-human animals focusing on reward sharing -comparison between rodents and birds-
注重奖励分享的非人类动物的合作行为-啮齿类动物与鸟类的比较-
- 批准号:
18K12020 - 财政年份:2018
- 资助金额:
$ 4.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




