Bayesian Variable Selection Methods for Matched Case-Control Studies

匹配病例对照研究的贝叶斯变量选择方法

基本信息

  • 批准号:
    8454915
  • 负责人:
  • 金额:
    $ 4.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-16 至 2014-09-15
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The long term goal of this research proposal is to develop variable selection procedures that can effectively incorporate both the study design used and the structure of the data. From a biomedical perspective, this development will be advantageous in that it will allow for a more accurate identification of biological features, such s genetic markers or imaging measures that distinguish among different disease groups. In turn, this improved identification of important disease biomarkers will contribute to deeper insights into the nature and etiology of many diseases and disorders. Matched case-control designs are currently used in a wide range of biomedical applications because they control for the effects of important potential confounds that can distort the true relationship between features and diagnostic group membership. In studies that use this design, a key interest is to identify important features in discriminating cases from controls. To ensure high efficiency and statistical power in identifying relevant features in distinguishing among disease groups, it is important to take into account the matched design that is used. However, in many instances, particularly those including high dimensional data analysis, there are few variable selection methods that account for matching. Bayesian approaches to variable selection are beneficial in that they offer efficient methods for handling high dimensional biological data. They yield tractable models that incorporate the biological structure of the data through the selection of prior distributions. The proposed methodology consists of a novel variable selection approach to effectively account for matching in case-control studies by formulating conditional logistic regression models in a Bayesian framework. This methodology will be carefully developed to handle a wide range of settings that have direct relevance to biomedical applications, including high dimensional data settings, interactions among different features, complex data structures, usage of different matched case- control designs, and ordering among disease groups or disorders. The proposed variable selection approach will be investigated in numerous simulation studies employing several types of matching, a brain imaging study in matched samples of stroke patients aimed at finding brain regions predictive of hospital acquired pneumonia, and a matched case-control study aimed at finding biomarkers in blood plasma for cardiovascular events. Its performance in the context of matched case-control studies will also be evaluated in comparison with other variable selection techniques. PUBLIC HEALTH RELEVANCE: In biomedical applications, matched case-control studies are frequently used to identify important biomarkers in characterizing many types of diseases and disorders that are current public health issues. To more accurately identify these important biomarkers, it is necessary to account for both the matched design used and the biological structure of the data. This research proposal will develop a new variable selection methodology that will efficiently incorporate matching and data structure in its analytic approach.
描述(由申请人提供):这项研究提案的长期目标是开发变量选择程序,能够有效地结合所使用的研究设计和数据结构。从生物医学的角度来看,这一发展将是有利的,因为它将允许更准确地识别生物学特征,如S遗传标记或区分不同疾病组的成像措施。反过来,这种对重要疾病生物标记物的改进识别将有助于更深入地了解许多疾病和障碍的性质和病因。配对病例对照设计目前在广泛的生物医学应用中被使用,因为它们控制重要的潜在混杂的影响,这些混杂可以扭曲特征和诊断小组成员之间的真实关系。在使用这种设计的研究中,一个关键的兴趣是确定区分病例和对照的重要特征。确保高效率和高统计 在区分疾病组时确定相关特征的能力,重要的是要考虑到所使用的匹配设计。然而,在许多情况下,特别是那些包括高维数据分析的情况下,几乎没有考虑匹配的变量选择方法。变量选择的贝叶斯方法是有益的,因为它们为处理高维生物数据提供了有效的方法。它们产生易于处理的模型,通过选择先前的分布来纳入数据的生物结构。所提出的方法包括一种新的变量选择方法,通过在贝叶斯框架下建立条件Logistic回归模型来有效地解释病例对照研究中的匹配。将仔细开发这一方法,以处理与生物医学应用直接相关的广泛设置,包括高维数据设置、不同特征之间的相互作用、复杂数据结构、不同匹配病例对照设计的使用以及疾病组或疾病之间的排序。建议的变量选择方法将在采用几种匹配类型的众多模拟研究中进行研究,在中风患者匹配样本中进行的大脑成像研究旨在寻找预测医院获得性肺炎的大脑区域,以及旨在在血浆中寻找心血管事件的生物标记物的匹配病例对照研究。它在配对病例对照研究中的表现也将与其他变量选择技术进行比较。 公共卫生相关性:在生物医学应用中,匹配的病例对照研究经常被用来确定重要的生物标志物,以表征当前公共卫生问题的许多类型的疾病和紊乱。为了更准确地识别这些重要的生物标志物,有必要同时考虑所使用的匹配设计和数据的生物结构。这项研究提案将开发一种新的变量选择方法,将有效地将匹配和数据结构纳入其分析方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Josephine Asafu-Adjei其他文献

Josephine Asafu-Adjei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Josephine Asafu-Adjei', 18)}}的其他基金

Bayesian Variable Selection Methods for Matched Case-Control Studies
匹配病例对照研究的贝叶斯变量选择方法
  • 批准号:
    8554322
  • 财政年份:
    2012
  • 资助金额:
    $ 4.71万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 4.71万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 4.71万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.71万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.71万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 4.71万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.71万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 4.71万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 4.71万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 4.71万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.71万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了