Identification of Lactobacillus Secreted Factors in Regulation of Pgp
乳酸菌分泌因子在 Pgp 调节中的鉴定
基本信息
- 批准号:8358779
- 负责人:
- 金额:$ 18.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:ABCB1 geneAffectAnimal ModelAnti-Inflammatory AgentsAnti-inflammatoryApicalAttenuatedBacteriaBacterial ToxinsBifidobacteriumCaco-2 CellsCell LineCellsCharacteristicsCloningColitisColonCrohn&aposs diseaseDNADataDeoxyribonucleasesDevelopmentDigestionDiseaseDrug EffluxEpithelialEpithelial CellsExcisionFunctional disorderFutureGene ExpressionGenetic PolymorphismGenetic TranscriptionGoalsHealthHeatingHigh Pressure Liquid ChromatographyHumanIn VitroInflammationInflammatory Bowel DiseasesInflammatory disease of the intestineIntestinal DiseasesIntestinesInvestigationLactobacillusLactobacillus acidophilusLeadLifeLipaseLipidsLiquid ChromatographyMAP Kinase GeneMediatingModalityMolecularMucous MembraneMulti-Drug ResistanceMusNatureP-GlycoproteinPathogenesisPathway interactionsPatientsPeptide HydrolasesPeptidesPharmaceutical PreparationsPlayPreventionProbioticsPropertyProteinsProteomicsRecombinant ProteinsRegulationResearchResearch DesignRiskRoleSignal PathwaySpectrometry, Mass, Electrospray IonizationSurfaceTestingTherapeuticTherapeutic AgentsUlcerative ColitisUp-RegulationXenobioticsbaseefficacy testingexpression vectorgel electrophoresisileumin vivo Modelinnovationinsightintestinal epitheliummRNA Expressionmonolayermouse modelnovelnovel therapeuticspromoterprotective effectprotein expressionresponsetandem mass spectrometry
项目摘要
DESCRIPTION (provided by applicant): P-glycoprotein (P-gp/MDR1), encoded by the ABCB1 gene is abundantly expressed on the apical surface of intestinal epithelial cells. Pgp is involved in the protection of intestinal epithelia by mediating the efflux of xenobiotics and bacterial toxis from the mucosa into the lumen. Dysregulation of Pgp function and expression have been implicated in the pathogenesis of intestinal disorders, such as inflammatory bowel diseases (IBD) and colitis. In this regard, polymorphisms in the human MDR1 gene have been associated with reduced intestinal P-glycoprotein expression in patients with ulcerative colitis and Crohn's disease. Also, MDR1- deficient mice spontaneously develop severe colitis resembling human UC. Further, a decrease in function and expression of Pgp has been shown in experimental mouse model of DSS-induced colitis. Therefore, it is critical to delineate the regulatory mechanisms that increase P-glycoprotein function in order to protect the intestinal epithelium. Unraveling such mechanisms may be beneficial in the treatment of intestinal inflammation. In this regard, we have recently shown that probiotic, Lactobacillus acidophilus (24 h) culture supernatant (CS) increased Pgp function and expression in human intestinal epithelial Caco2 cells. Also, in parallel studies in mice demonstrated a significant increase in Pgp expression in the ileum and colon in response to live L. acidophilus bacteria. L. acidophilus also blocked the reduced expression of Pgp mRNA and protein expression as well as inflammation in the colon of DSS colitis mice further suggesting that suppression of inflammation could be in part due to the up-regulation of Pgp by L. acidophilus. The increase in Pgp function in Caco2 cells by L. acidophilus CS occurred via PI3K, Erk1/2 MAPK pathways and stimulation of Pgp promoter activity indicating modulation at the level of gene transcription. However, the identity of the secreted bioactive factor (s) present in the culture supernatant of L. acidophilus that increase Pgp function, expression and promoter activity are not known. Therefore, our studies proposed in Aims 1 a-c will focus on identifying the secreted bioactive factor (s) on the basis of their physicochemical properties and further characterization by proteomic and lipidomic analysis. Aims 1d & e will test the functional efficacy of the identified protein (s) or lipid (s) on Pgp actvity and expression and the molecular mechanisms involved in the stimulation of Pgp gene expression. Therefore, our studies aimed at identifying the bioactive factor (s) secreted by L. acidophilus and determining the molecular mechanisms underlying the regulation of Pgp function and expression by the identified protein (s) or lipid (s) will greatly enhance our understanding of the mechanisms of intestinal Pgp function and may provide the basis for new and more efficacious treatment modalities for alleviating intestinal inflammation. Since using live
bacteria could be a potential risk in the treatment of gut disorders, using secreted bioactive factor (s) instead of live bacteria would lead to an innovative approach for their therapeutic usage.
PUBLIC HEALTH RELEVANCE: Disturbances in the intestinal luminal wall health leads to the development of intestinal inflammation associated with various intestinal diseases such as inflammatory bowel diseases (IBD) and colitis. P-glycoprotein (Pgp) plays a critical role in the protection of the intestinal barrier by mediating the removal of drugs/xenobiotics and bacterial toxins from the intestinal wall into the gut cavity. A decrease in function and expression of Pgp has been shown in patients with IBD and in experimental mouse model of colitis. We have recently shown that the probiotic, L. acidophilus culture supernatant increases Pgp function and expression in intestinal epithelial cells, that could contribute to the beneficial effects of probitics in inflammation. The studies proposed in this application will identify the novel secreted bioactive factor (s) that modulate Pgp and could be used as potential therapeutic agents in the prevention and treatment of IBD.
DESCRIPTION (provided by applicant): P-glycoprotein (P-gp/MDR1), encoded by the ABCB1 gene is abundantly expressed on the apical surface of intestinal epithelial cells. Pgp is involved in the protection of intestinal epithelia by mediating the efflux of xenobiotics and bacterial toxis from the mucosa into the lumen. Dysregulation of Pgp function and expression have been implicated in the pathogenesis of intestinal disorders, such as inflammatory bowel diseases (IBD) and colitis. In this regard, polymorphisms in the human MDR1 gene have been associated with reduced intestinal P-glycoprotein expression in patients with ulcerative colitis and Crohn's disease. Also, MDR1- deficient mice spontaneously develop severe colitis resembling human UC. Further, a decrease in function and expression of Pgp has been shown in experimental mouse model of DSS-induced colitis. Therefore, it is critical to delineate the regulatory mechanisms that increase P-glycoprotein function in order to protect the intestinal epithelium. Unraveling such mechanisms may be beneficial in the treatment of intestinal inflammation. In this regard, we have recently shown that probiotic, Lactobacillus acidophilus (24 h) culture supernatant (CS) increased Pgp function and expression in human intestinal epithelial Caco2 cells. Also, in parallel studies in mice demonstrated a significant increase in Pgp expression in the ileum and colon in response to live L. acidophilus bacteria. L. acidophilus also blocked the reduced expression of Pgp mRNA and protein expression as well as inflammation in the colon of DSS colitis mice further suggesting that suppression of inflammation could be in part due to the up-regulation of Pgp by L. acidophilus. The increase in Pgp function in Caco2 cells by L. acidophilus CS occurred via PI3K, Erk1/2 MAPK pathways and stimulation of Pgp promoter activity indicating modulation at the level of gene transcription. However, the identity of the secreted bioactive factor (s) present in the culture supernatant of L. acidophilus that increase Pgp function, expression and promoter activity are not known. Therefore, our studies proposed in Aims 1 a-c will focus on identifying the secreted bioactive factor (s) on the basis of their physicochemical properties and further characterization by proteomic and lipidomic analysis. Aims 1d & e will test the functional efficacy of the identified protein (s) or lipid (s) on Pgp actvity and expression and the molecular mechanisms involved in the stimulation of Pgp gene expression. Therefore, our studies aimed at identifying the bioactive factor (s) secreted by L. acidophilus and determining the molecular mechanisms underlying the regulation of Pgp function and expression by the identified protein (s) or lipid (s) will greatly enhance our understanding of the mechanisms of intestinal Pgp function and may provide the basis for new and more efficacious treatment modalities for alleviating intestinal inflammation. Since using live
bacteria could be a potential risk in the treatment of gut disorders, using secreted bioactive factor (s) instead of live bacteria would lead to an innovative approach for their therapeutic usage.
PUBLIC HEALTH RELEVANCE: Disturbances in the intestinal luminal wall health leads to the development of intestinal inflammation associated with various intestinal diseases such as inflammatory bowel diseases (IBD) and colitis. P-glycoprotein (Pgp) plays a critical role in the protection of the intestinal barrier by mediating the removal of drugs/xenobiotics and bacterial toxins from the intestinal wall into the gut cavity. A decrease in function and expression of Pgp has been shown in patients with IBD and in experimental mouse model of colitis. We have recently shown that the probiotic, L. acidophilus culture supernatant increases Pgp function and expression in intestinal epithelial cells, that could contribute to the beneficial effects of probitics in inflammation. The studies proposed in this application will identify the novel secreted bioactive factor (s) that modulate Pgp and could be used as potential therapeutic agents in the prevention and treatment of IBD.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seema Saksena其他文献
Seema Saksena的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seema Saksena', 18)}}的其他基金
Regulation of Intestinal Sodium Absorption in Health and Disease
健康和疾病中肠道钠吸收的调节
- 批准号:
9892298 - 财政年份:2015
- 资助金额:
$ 18.9万 - 项目类别:
Regulation of Intestinal Sodium Absorption in Health and Disease
健康和疾病中肠道钠吸收的调节
- 批准号:
10554298 - 财政年份:2015
- 资助金额:
$ 18.9万 - 项目类别:
Regulation of Intestinal Sodium Absorption in Health and Disease
健康和疾病中肠道钠吸收的调节
- 批准号:
10427123 - 财政年份:2015
- 资助金额:
$ 18.9万 - 项目类别:
EPIGENETIC REGULATION OF INTESTINAL Na+/H+ EXCHANGER-3
肠道 Na /H EXCHANGER-3 的表观遗传调控
- 批准号:
8924771 - 财政年份:2015
- 资助金额:
$ 18.9万 - 项目类别:
Identification of Lactobacillus Secreted Factors in Regulation of Pgp
乳酸菌分泌因子在 Pgp 调节中的鉴定
- 批准号:
8496034 - 财政年份:2012
- 资助金额:
$ 18.9万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 18.9万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists