A New Biomechanical Model to Examine Joint Control Adaptations during Running in

用于检查磨合期间关节控制适应性的新生物力学模型

基本信息

  • 批准号:
    8229023
  • 负责人:
  • 金额:
    $ 7.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Over 1.6 million people live with limb loss in the United States, and 80,000 to 90,000 lower limb amputation surgeries are performed each year in this country alone. Locomotion eases our ability to perform our everyday activities at home, work, and in the community, and it is imperative for individuals who undergo lower extremity amputations to achieve locomotive levels to maximize quality of life. Early studies on "functional capabilities" of individuals with lower extremity amputations (ILEA) found that the most difficult physical activity was running. Recent developments of running-specific prostheses (RSPs) have attracted many ILEA to choose running as their form of cardiovascular exercise and it is likely that the cardiovascular benefits of running reported in prior studies extend to this population. However, the impact forces and mechanical adaptations of running with an RSP may put this group at risk for physical injuries and degenerative joint diseases, as suggested by our preliminary data and previous studies. Our preliminary data on ILEA running show that the ground reaction forces recorded provide asymmetrical loading to the limbs with the intact limb bearing a greater load than the residual limb. This pattern was consistent at different running velocities. Asymmetrical limb loading has been indicated as a risk factor in the development and progression of degenerative joint diseases (DJD), but more specific data, such as adaptations in joint kinetics, are needed to better understand the mechanisms of DJD and overuse injuries. Unfortunately, a very limited number of studies provide insights into more specific mechanisms of joint loading and adaptations made by ILEA during running. Furthermore, no validated biomechanical models currently exist for joint kinetic analyses of ILEA running with RSPs. Our preliminary work has developed such a model and indicates that accurate joint kinetic measurements can be estimated and interpreted. Using this model we propose to assess the force transmission through the lower extremities and the biomechanical adaptations of ILEA running with RSPs. By systematically testing a range of running velocities, we will examine joint kinetic adaptations employed to achieve these velocities to compare and contrast ILEA adaptations to those of able-bodied control subjects. Our central hypothesis is that running with an RSP will cause greater strain on the intact limb of ILEA compared to able-bodied runners as measured by joint kinetic adaptations. The long-term objective of this research program is to characterize ILEA running and use these findings as a scientific foundation to develop RSPs and rehabilitation strategies that minimize the potential for overuse injury while maximizing the health and quality of life for ILEA. PUBLIC HEALTH RELEVANCE: The recent developments in running-specific prostheses (RSPs) have attracted many individuals with low- extremity amputations (ILEA) to running for cardiovascular exercise, and it is likely that the cardiovascular benefits of running reported in previous studies can generalize to ILEA. However, the impact forces and mechanical adaptations of running with an RSP may put this group at risk for physical injuries and degenerative joint diseases. We propose to assess these risks by measuring the force transmission through the lower extremities and biomechanical adaptations of ILEA running with RSPs using biomechanical models developed and validated in our preliminary studies.
描述(申请人提供):在美国有160多万人失去肢体,仅在这个国家每年就有8万到9万例下肢截肢手术。运动使我们能够在家里、工作和社区进行日常活动,对于接受下肢截肢的人来说,达到运动水平以最大限度提高生活质量是势在必行的。早期关于下肢截肢(ILEA)患者“功能能力”的研究发现,最困难的体力活动是跑步。跑步专用假体(RSP)的最新发展吸引了许多ILEA选择跑步作为他们的心血管运动形式,以前的研究报告的跑步对心血管的好处很可能延伸到这一人群。然而,我们的初步数据和先前的研究表明,带着RSP跑步的冲击力和机械适应能力可能会使这一群体面临身体损伤和退行性关节疾病的风险。我们关于ILEA跑步的初步数据显示,记录的地面反作用力为四肢提供了不对称的载荷,完整的肢体比残肢承担更大的负荷。这种模式在不同的运行速度下是一致的。肢体负荷不对称已被认为是退行性关节疾病(DJD)发生和发展的危险因素,但需要更具体的数据,如关节动力学的适应,以更好地了解DJD和过度使用损伤的机制。不幸的是,非常有限的研究为ILEA在跑步过程中关节负荷和适应的更具体机制提供了深入的见解。此外,目前还没有经过验证的生物力学模型来分析带RSP的ILEA的关节动力学。我们的初步工作已经建立了这样一个模型,并表明可以估计和解释准确的关节动力学测量。利用这一模型,我们建议评估ILEA带着RSP跑步时的力量传递和生物力学适应性。通过系统地测试一系列跑步速度,我们将检查达到这些速度所使用的关节运动适应,以比较和对比ILEA与健全对照受试者的适应。我们的中心假设是,根据关节运动适应的测量,带RSP的跑步会对ILEA的完整肢体造成更大的压力,而不是身体健全的跑步者。这项研究计划的长期目标是描述ILEA的运行特征,并以这些发现为科学基础,开发RSP和康复策略,将过度使用伤害的可能性降至最低,同时最大限度地提高ILEA的健康和生活质量。 与公共健康相关:跑步专用假体(RSP)的最新发展吸引了许多下肢截肢(ILEA)患者跑步进行心血管锻炼,以前研究报告的跑步对心血管的好处很可能推广到ILEA。然而,带着RSP跑步的冲击力和机械适应能力可能会使这一群体面临身体损伤和退行性关节疾病的风险。我们建议通过在我们的初步研究中开发和验证的生物力学模型来测量带RSP跑步的ILEA的力量传递和生物力学适应来评估这些风险。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jae Kun Shim其他文献

Jae Kun Shim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jae Kun Shim', 18)}}的其他基金

A New Biomechanical Model to Examine Joint Control Adaptations during Running in
用于检查磨合期间关节控制适应性的新生物力学模型
  • 批准号:
    8495939
  • 财政年份:
    2012
  • 资助金额:
    $ 7.16万
  • 项目类别:

相似海外基金

CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
  • 批准号:
    2340080
  • 财政年份:
    2024
  • 资助金额:
    $ 7.16万
  • 项目类别:
    Continuing Grant
Cruising the whale superhighway: The evolution, biomechanics, and ecological drivers of migration in cetaceans
巡航鲸鱼高速公路:鲸目动物迁徙的进化、生物力学和生态驱动因素
  • 批准号:
    NE/Y000757/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.16万
  • 项目类别:
    Research Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
  • 批准号:
    2413182
  • 财政年份:
    2024
  • 资助金额:
    $ 7.16万
  • 项目类别:
    Standard Grant
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
  • 批准号:
    DP240101449
  • 财政年份:
    2024
  • 资助金额:
    $ 7.16万
  • 项目类别:
    Discovery Projects
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
  • 批准号:
    2338676
  • 财政年份:
    2024
  • 资助金额:
    $ 7.16万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
  • 批准号:
    2344385
  • 财政年份:
    2024
  • 资助金额:
    $ 7.16万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
  • 批准号:
    2341368
  • 财政年份:
    2024
  • 资助金额:
    $ 7.16万
  • 项目类别:
    Standard Grant
Material testing machine for biomechanics
生物力学材料试验机
  • 批准号:
    520201861
  • 财政年份:
    2023
  • 资助金额:
    $ 7.16万
  • 项目类别:
    Major Research Instrumentation
Stem cell/niche biomechanics in intestinal health and disease
肠道健康和疾病中的干细胞/利基生物力学
  • 批准号:
    2885708
  • 财政年份:
    2023
  • 资助金额:
    $ 7.16万
  • 项目类别:
    Studentship
Determining the impact of lifestyle-related biomechanics on muscle in the ageing human arm
确定与生活方式相关的生物力学对衰老人类手臂肌肉的影响
  • 批准号:
    2899554
  • 财政年份:
    2023
  • 资助金额:
    $ 7.16万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了