Quantitative label-free imaging of membrane protein interaction kinetics on cells
细胞膜蛋白相互作用动力学的定量无标记成像
基本信息
- 批准号:8695190
- 负责人:
- 金额:$ 26.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlgorithmsBedsBindingBiologicalBiological AssayBiological MarkersBiological ModelsBiological ProcessCancer DiagnosticsCancer PatientCell CountCell LineCell membraneCellsDataDetectionDevice or Instrument DevelopmentDiseaseDoseDrug ReceptorsDrug TargetingDrug resistanceDrug usageDrug-sensitiveEnd Point AssayEnvironmentEpidermal Growth Factor ReceptorEventExclusionFeedbackFrequenciesG-Protein-Coupled ReceptorsGoalsGrantHumanImageImaging TechniquesImmobilizationImmunofluorescence ImmunologicIn SituIndustry CollaboratorsInvestigationKineticsLabelLeadMapsMeasurementMeasuresMembraneMembrane ProteinsMethodsMicroscopyMolecularMonitorMonoclonal AntibodiesNatureNoiseOpticsPerformancePharmaceutical PreparationsPreclinical Drug EvaluationPrimary NeoplasmProceduresProtein BindingProteinsReal-Time SystemsReceptor CellResistanceResolutionRoche brand of trastuzumabSamplingScanningSignal PathwaySignal TransductionSolidStructureSurfaceSystemTailTechniquesTechnologyTestingTimeValidationWorkantitumor drugbasedesigndrug candidateelectric impedancefluorescence imagingimage processingimprovedinnovationinsightmillisecondneoplastic cellnovelpanitumumabplasmonicspre-clinicalpublic health relevancereal world applicationreceptorreceptor bindingresearch studyresponsesensorsmall moleculesubmicronsuccesstherapeutic evaluationtool
项目摘要
DESCRIPTION (provided by applicant): Proteins embedded in or attached to cell membranes perform many critically important biological functions, including cell signaling, communication and the transport of vital substances into and out of cells. They are also the most important drug targets and disease biomarkers. Despite the importance, studying membrane proteins, especially quantifying their interactions with other molecules, such as drug candidates, has been a difficult challenge. Current methods rely on either labeling the proteins with fluorescent tags or extracting them from their native membrane environment, and then purifying and immobilizing them on a surface for binding kinetic studies. The former approach is an end-point-assay, which does not provide kinetics information required for quantifying protein interactions, while the latter is not only labor-intensive but also prone to alternation of the native structures
and functions of the membrane proteins. This project focuses on developing a novel technique for studying and quantifying membrane protein interactions in their native cellular environment without the need of extraction, purification, or immobilization. The core of the technique is plasmonic-based electrical impedance microscopy (P-EIM) recently invented in the PIs' lab, which has several unique capabilities: 1) It is label free and can provide quantitative analysis of
binding kinetics; 2) It has a high spatial resolution (sub-microns), and thus is suitable for analyzing membrane protein binding activities of single cells, and for mapping local binding kinetics of membrane proteins within a single cell; 3) It is fast (millisecond time resolution), which enables real-time tracking of cell signal transduction cascade triggered by small molecule binding to membrane proteins. Additionally, the technique allows for simultaneous plasmonic, impedance and fluorescence imaging, and combines the strengths of these methods in one system.
描述(申请人提供):嵌入或附着在细胞膜上的蛋白质执行许多至关重要的生物学功能,包括细胞信号、通讯和重要物质的进出细胞的运输。它们也是最重要的药物靶点和疾病生物标志物。尽管膜蛋白很重要,但研究膜蛋白,特别是量化它们与其他分子的相互作用,如候选药物,一直是一个艰巨的挑战。目前的方法要么用荧光标记蛋白质,要么从天然的膜环境中提取蛋白质,然后将它们纯化并固定在表面上进行结合动力学研究。前一种方法是终点法,它不提供量化蛋白质相互作用所需的动力学信息,而后一种方法不仅劳动密集型,而且容易改变天然结构
以及膜蛋白的功能。该项目致力于开发一种新的技术来研究和定量膜蛋白在天然细胞环境中的相互作用,而不需要提取、纯化或固定化。该技术的核心是PIS实验室最近发明的基于等离子体的电阻抗显微镜(P-EIM),它具有几个独特的功能:1)它是免标记的,可以提供对
结合动力学;2)它具有高的空间分辨率(亚微米),因此适合于分析单个细胞的膜蛋白结合活性,并适用于绘制单个细胞内膜蛋白的局部结合动力学图;3)它具有快速(毫秒级的时间分辨率),能够实时跟踪小分子与膜蛋白结合引发的细胞信号转导级联。此外,该技术允许同时进行等离子成像、阻抗成像和荧光成像,并在一个系统中结合了这些方法的优点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAOPENG WANG其他文献
SHAOPENG WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAOPENG WANG', 18)}}的其他基金
Optical imaging of size, charge, mobility and binding of single proteins
单个蛋白质的大小、电荷、迁移率和结合的光学成像
- 批准号:
10521663 - 财政年份:2022
- 资助金额:
$ 26.92万 - 项目类别:
Optical imaging of size, charge, mobility and binding of single proteins
单个蛋白质的大小、电荷、迁移率和结合的光学成像
- 批准号:
10687006 - 财政年份:2022
- 资助金额:
$ 26.92万 - 项目类别:
A Virion-Display Oscillator Array and Detection Platform for Quantification of Transmembrane Protein Binding Kinetics
用于量化跨膜蛋白结合动力学的病毒粒子显示振荡器阵列和检测平台
- 批准号:
10115647 - 财政年份:2020
- 资助金额:
$ 26.92万 - 项目类别:
A Virion-Display Oscillator Array and Detection Platform for Quantification of Transmembrane Protein Binding Kinetics
用于量化跨膜蛋白结合动力学的病毒粒子显示振荡器阵列和检测平台
- 批准号:
10357577 - 财政年份:2020
- 资助金额:
$ 26.92万 - 项目类别:
A Virion-Display Oscillator Array and Detection Platform for Quantification of Transmembrane Protein Binding Kinetics
用于量化跨膜蛋白结合动力学的病毒粒子显示振荡器阵列和检测平台
- 批准号:
9889569 - 财政年份:2020
- 资助金额:
$ 26.92万 - 项目类别:
Point-of-care antimicrobial susceptibility testing based on simultaneous tracking of multi-phenotypic features of single bacterial cells
基于同时跟踪单个细菌细胞的多表型特征的护理点抗菌药物敏感性测试
- 批准号:
10426291 - 财政年份:2018
- 资助金额:
$ 26.92万 - 项目类别:
Point-of-care antimicrobial susceptibility testing based on simultaneous tracking of multi-phenotypic features of single bacterial cells
基于同时跟踪单个细菌细胞的多表型特征的护理点抗菌药物敏感性测试
- 批准号:
10188407 - 财政年份:2018
- 资助金额:
$ 26.92万 - 项目类别:
Quantitative label-free imaging of membrane protein interaction kinetics on cells
细胞膜蛋白相互作用动力学的定量无标记成像
- 批准号:
9086372 - 财政年份:2014
- 资助金额:
$ 26.92万 - 项目类别:
Quantitative label-free imaging of membrane protein interaction kinetics on cells
细胞膜蛋白相互作用动力学的定量无标记成像
- 批准号:
8882482 - 财政年份:2014
- 资助金额:
$ 26.92万 - 项目类别:
Quantitative label-free imaging of electrical activities in cells
细胞电活动的定量无标记成像
- 批准号:
10242180 - 财政年份:2014
- 资助金额:
$ 26.92万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 26.92万 - 项目类别:
Continuing Grant