The influence of prosthesis use on cortical activation and movement variability
假肢使用对皮质激活和运动变异性的影响
基本信息
- 批准号:9795147
- 负责人:
- 金额:$ 17.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:12 year old3D PrintAffectAgeAmputationAreaBehavior monitoringBrainCerebral cortexChildChild DevelopmentChildhoodComplexCustomData CollectionDevelopmentDiseaseElectroencephalogramElectroencephalographyFunctional Magnetic Resonance ImagingGrowthIndividualKnowledgeLeadLearningLifeLimb ProsthesisLimb structureLive BirthMonitorMorphologic artifactsMotorMotor CortexMotor SkillsMovementNear-Infrared SpectroscopyNeuronsNoiseOutcomePatternPerformancePopulationProsthesisRehabilitation therapySensorySideTechniquesTestingUnited StatesUpper ExtremityVisualWeightWorkcost effectiveevidence basehuman subjectimprovedimproved functioninginnovationlight weightmotor controlmovement analysisneuroimagingpreventprogramsprototyperecruitrelating to nervous systemresponseskill acquisitiontheories
项目摘要
Project Summary
In the United States, more than 541,000 individuals live with congenital upper-limb reductions or amputations.
Worldwide estimates for upper-limb congenital reductions range from 4-5/10,000 to 1/100 live births. The use
of body-powered upper-limb prostheses helps children with upper-limb reductions to engage in functional
activities that are fundamental to normal growth and motor development. However, the development of
prostheses for children is complex due to their rapid and continuous growth. Up to 58% of children with upper-
limb reductions reject or abandon their prosthesis due to excessive weight, lack of visual appeal, limited
function and complexity of control. 3D printed prostheses provide a cost-effective solution to the development
of light-weight, customized and visually appealing prostheses for children, potentially encouraging use.
Theoretically, the use of a prosthesis may lead to an enlargement of the primary neuronal networks located in
the cortical area involved with motor control of the affected limb. Ultimately, this might lead to a larger
repertoire of motor strategies and integration of the prosthesis into the motor control of the child facilitating
prosthesis acceptance. However, there is little or no evidence supporting this hypothesis. The neural basis
underlying motor performance and movement variability in children using a prosthesis has been severely
understudied resulting in minimal empirical evidence. This is largely due to i) the high prosthesis rejection rate
and abandonment observed in this pediatric population making it difficult to properly monitor behavioral or
neural changes before and after using a prosthesis, and ii) technological constraints of traditional neuroimaging
techniques, such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), in the
assessment of brain function of pediatric populations. Functional near-infrared spectroscopy (fNIRS) has
emerged as a practical neuroimaging technique that is less sensitive to noise and movement artifacts than
EEG and fMRI, making it easier for children to tolerate testing. The use of fNIRS in conjunction with
customized and visually appealing 3D printed prostheses would provide the unique opportunity to quantitatively
assess the influence of upper-limb prostheses in the neural activation patterns of the primary motor cortex,
motor performance and movement variability of children. Our pilot work has shown a reduction of cortical
activation resulting in a more efficient motor response and increased coordination after prolonged use of a 3D
printed upper-limb prosthesis. This study will determine the influence of using a prosthesis on the neural
activation patterns of the primary motor cortex in children with unilateral congenital upper-limb reductions. The
central hypothesis is that prolonged prosthesis use will result in a reduced primary cortex activation indicating
that wearing a prosthesis may assist the primary motor cortex to produce a more refined, specialized, and
efficient motor cortex response improving motor performance and the functional use of the prosthesis.
项目摘要
在美国,超过541,000人患有先天性上肢切除或截肢。
全世界对上肢先天减少的估计在4-5/10,000到1/100活产之间。它的用途
身体动力型上肢假体帮助上肢缩小的儿童从事功能性
对正常生长和运动发育至关重要的活动。然而,中国的发展
儿童假体由于其快速和持续的生长发育而变得复杂。高达58%的儿童患有上-
肢体减压术因体重过大、缺乏视觉吸引力、受限而拒绝或放弃假肢
控制的功能和复杂性。3D打印假体为开发提供了经济高效的解决方案
为儿童提供轻质、定制和视觉上吸引人的假肢,潜在地鼓励使用。
从理论上讲,假体的使用可能会导致位于脑部的初级神经元网络的扩大
与患肢的运动控制有关的皮质区域。最终,这可能会导致更大的
运动策略和将假体整合到儿童运动控制中的技巧
假体验收。然而,几乎没有证据支持这一假设。神经基础
使用假体的儿童潜在的运动能力和运动变异性已经严重
研究不足,导致经验性证据最少。这在很大程度上是由于i)高的假体排斥率
在儿科人群中观察到的遗弃行为使其难以适当地监测行为或
使用假体前后的神经变化,以及II)传统神经成像的技术限制
功能磁共振成像(FMRI)和脑电(EEG)等技术在
儿科人群脑功能的评估。功能近红外光谱(FNIRS)
作为一种实用的神经成像技术,它对噪音和运动伪影的敏感度低于
EEG和功能磁共振成像,使儿童更容易耐受测试。将fNIRS与
定制的和视觉上有吸引力的3D打印假体将提供独特的机会来量化
评估上肢假体对初级运动皮质神经激活模式的影响,
儿童的运动能力和运动变异性。我们的试点工作显示出大脑皮质的减少
激活导致更有效的运动反应和增加协调性后,长期使用3D
打印的上肢假体。这项研究将确定使用假体对神经的影响
单侧先天性上肢缩小儿童初级运动皮质的激活模式。这个
中心假设是,长时间使用假体将导致初级皮质激活减少,这表明
佩戴假肢可能会帮助初级运动皮质产生更精细、专门和
有效的运动皮质反应,改善运动性能和假体的功能使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jorge M Zuniga其他文献
Jorge M Zuniga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 17.85万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 17.85万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 17.85万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 17.85万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 17.85万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 17.85万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 17.85万 - 项目类别:
Standard Grant














{{item.name}}会员




