Atomic-level characterization of self-regulatory mechanisms in large multidomain enzymes
大型多域酶自我调节机制的原子水平表征
基本信息
- 批准号:9797195
- 负责人:
- 金额:$ 36.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AntibioticsBacterial InfectionsBindingBiochemicalBiological ProcessBiologyBiophysicsCell physiologyCommunicationComplexCouplingDevelopmentEnzymesFutureGene ExpressionHumanMalignant NeoplasmsMediatingMessenger RNAMetabolismMicrobial BiofilmsModificationMolecular ConformationMolecular WeightObesityPhosphorylationPhosphotransferasesPlayProtein DynamicsProteinsRNARegulationResearchResolutionRoleSeriesSourceStimulusStructureSystemVirulencebacterial metabolismbasecofactorcombatdemethylationdimerenzyme structureflexibilityhuman diseaseinsightinterestlipid biosynthesisnanomachinenovelnovel strategiesnovel therapeutic interventionprogramsprotein protein interactionresponsesmall moleculetumor progressiontumorigenesis
项目摘要
PROJECT SUMMARY/ABSTRACT
Enzymes are remarkable nanomachines that play a myriad of essential functions in cellular metabolism.
Modulation of enzyme structure and flexibility by cofactor/substrate binding provides an important source of
regulation of enzyme function, yet our understanding of the fundamental mechanisms coupling protein
dynamics to enzymatic activity is still largely incomplete. Indeed, while our appreciation of how conformational
dynamics mediate biological function is predominantly based on structural studies on low-complexity, low-
molecular weight systems, enzymes are typically oligomeric, multidomain proteins whose biological function
depends on an intricate coupling among intradomain, interdomain, and intersubunit conformational equilibria.
Without a comprehensive, atomic-resolution understanding of conformational dynamics-mediated, self-
regulatory mechanisms in high-complexity, high-molecular weight enzymes, our ability to understand and
exploit ubiquitous phenomena in biology, such as allosterism and cooperativity, will continue to lag.
Here, we will use NMR combined with other biophysical and biochemical approaches to reveal how the
complex interplay between cofactor/substrate binding and conformational dynamics regulates the activity of
high molecular weight enzymes that are essential for human and bacterial metabolism. The systems of interest
in this proposal are Enzyme I (EI) of the bacterial phosphotransferase system (PTS), and the human RNA
demethylases FTO and Alkbh5. EI is a 128 kDa dimeric enzyme whose activity depends on the synergistic
action of four conformational equilibria that results in a series of large intradomain, interdomain, and
intersubunit structural rearrangements modulated by substrate binding. The PTS is a central regulator of
bacterial metabolism that controls multiple cellular functions, including virulence and biofilm formation, through
phosphorylation-dependent protein-protein interactions. Therefore, understanding EI activity at atomic level will
illuminate the fundamental mechanisms governing long-range interdomain communication in proteins, and may
suggest new therapeutic strategies to combat bacterial infections. The second part of the present proposal
focuses on enzymes that are capable of catalyzing oxidative demethylation of the N6-methyladenosine (m6A).
m6A is the most abundant modification in eukaryotic mRNA. Dynamic regulation of the m6A modification plays
an important role in gene expression, cellular response to external stimuli, oncogenesis, adipogenesis and in
development of other human diseases. We will investigate the mechanisms that regulate the function of the
human RNA demethylases FTO and Alkbh5 with atomic resolution. Our results will guide new strategies to
achieve selective inhibition of FTO and Alkbh5 to control gene expression and to contrast progression of
cancer. In summary, my research program will elucidate the coupling between large scale conformational
changes and function in two distinct classes of high molecular weight multidomain enzymes, providing new
insights for future therapies for obesity and cancer as well as novel antibiotic targets.
项目摘要/摘要
酶是非凡的纳米机器,在细胞新陈代谢中发挥着无数的基本功能。
辅因子/底物结合的酶结构和灵活性的调节提供了一个重要的来源
酶功能的调节,但我们对偶联蛋白质的基本机制的理解
酶活性的动力学仍在很大程度上不完整。事实上,虽然我们对构象的欣赏
动力学中介生物功能的主要基础是低复杂性、低成本和低成本的结构研究。
分子量系统,酶是典型的寡聚、多结构域蛋白质,其生物学功能
依赖于结构域内、结构域间和亚基间构象平衡之间的复杂耦合。
没有对构象动力学的全面的、原子分辨率的理解--介导的、自我的
高复杂性、高分子量酶的调节机制,我们理解和
利用生物学中普遍存在的现象,如变构和协作性,将继续滞后。
在这里,我们将使用核磁共振结合其他生物物理和生化方法来揭示
辅因子/底物结合和构象动力学之间的复杂相互作用调节酶的活性
对人类和细菌新陈代谢必不可少的高分子量酶。有关利益的制度
在这项建议中是细菌磷酸转移酶系统(PTS)的酶I(EI),以及人类的RNA
去甲基化酶FTO和Alkbh5。EI是一种128 kDa的二聚体酶,其活性依赖于协同作用
四种构象平衡的作用,导致一系列大的结构域内、结构域间和
底物结合调节的亚基间结构重排。临时秘书处是一个中央监管机构,
控制多种细胞功能的细菌代谢,包括毒力和生物膜的形成,通过
依赖于磷酸化的蛋白质-蛋白质相互作用。因此,在原子水平上理解EI活动将
阐明了管理蛋白质中远程域间通信的基本机制,并可能
提出新的治疗策略来对抗细菌感染。本提案的第二部分
重点介绍能够催化N6-甲基腺苷(M6A)氧化去甲基化的酶。
M6A是真核基因中含量最丰富的修饰。M6A修饰剧的动态调整
在基因表达、细胞对外界刺激的反应、肿瘤发生、脂肪形成和
其他人类疾病的发展。我们将研究调节细胞功能的机制
人RNA去甲基化酶FTO和Alkbh5具有原子分辨率。我们的结果将指导新的战略
实现对FTO和Alkbh5的选择性抑制以控制基因表达和对比进展
癌症。总而言之,我的研究计划将阐明大规模构象之间的耦合
两类不同类型的高分子量多结构域酶的变化和功能,提供了新的
对未来治疗肥胖症和癌症的见解以及新的抗生素靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vincenzo Venditti其他文献
Vincenzo Venditti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vincenzo Venditti', 18)}}的其他基金
Atomic-level characterization of self-regulatory mechanisms in large multidomain enzymes
大型多域酶自我调节机制的原子水平表征
- 批准号:
10408689 - 财政年份:2019
- 资助金额:
$ 36.94万 - 项目类别:
Atomic-level characterization of self-regulatory mechanisms in large multidomain enzymes
大型多域酶自我调节机制的原子水平表征
- 批准号:
10166882 - 财政年份:2019
- 资助金额:
$ 36.94万 - 项目类别:
Atomic-level characterization of self-regulatory mechanisms in large multidomain enzymes
大型多域酶自我调节机制的原子水平表征
- 批准号:
10622947 - 财政年份:2019
- 资助金额:
$ 36.94万 - 项目类别:
相似海外基金
New roles of IFN-inducible OAS proteins in innate immune defense against bacterial infections
IFN诱导的OAS蛋白在针对细菌感染的先天免疫防御中的新作用
- 批准号:
10649771 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Derivation and validation of a clinical prediction rule to identify febrile infants 61 to 90 days old at low and non-negligible risk of invasive bacterial infections
推导和验证临床预测规则,以识别 61 至 90 天大的发热婴儿,其侵袭性细菌感染的风险较低且不可忽略
- 批准号:
10574286 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Structural and functional studies of YbtPQ for fighting bacterial infections
YbtPQ 对抗细菌感染的结构和功能研究
- 批准号:
10644889 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
A gut feeling: How can gastrointestinal bacterial infections alter female reproductive tract immunity and control of sexually transmitted infections
直觉:胃肠道细菌感染如何改变女性生殖道免疫力和性传播感染的控制
- 批准号:
MR/X031993/1 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Research Grant
Molecular probes to diagnose pathoadapatations in bacterial infections
诊断细菌感染病理适应的分子探针
- 批准号:
EP/X014479/1 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Research Grant
Using Small Area Variation Analysis to Investigate Sources of Practice Variation for Febrile Infants at Risk for Invasive Bacterial Infections
使用小面积变异分析来调查有侵袭性细菌感染风险的发热婴儿的实践变异来源
- 批准号:
10588846 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Host Directed Orynotide for MDR Gram Negative Bacterial Infections
宿主定向 Orynotide 用于治疗耐多药革兰氏阴性细菌感染
- 批准号:
10674221 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
SimCell vaccines against Staphylococcus aureus bacterial infections
针对金黄色葡萄球菌细菌感染的 SimCell 疫苗
- 批准号:
10073241 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Grant for R&D
I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics
I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染
- 批准号:
2306943 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Standard Grant
Multidimensional development of high-affinity anti-glycan antibodies to fight deadly bacterial infections
多维开发高亲和力抗聚糖抗体以对抗致命细菌感染
- 批准号:
10549640 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别: