The molecular mechanism of clonal dominance in 5q(del) MDS
5q(del)MDS克隆优势的分子机制
基本信息
- 批准号:9795448
- 负责人:
- 金额:$ 34.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:Adenomatous Polyposis ColiAffectBinding SitesBiological AssayBone Marrow CellsCD34 geneCell MaintenanceCellsChIP-seqChromosome DeletionChromosome abnormalityClone CellsComplexData AnalysesDevelopmentDisadvantagedDiseaseDoseDown-RegulationDysmyelopoietic SyndromesEquilibriumEventFOXM1 geneFamilyFunctional disorderGene DosageGene Expression ProfilingGene MutationGenesGenetic TranscriptionGrowthHematologic NeoplasmsHematologyHematopoiesisHematopoietic stem cellsHumanImmunologyIn VitroIneffective HematopoiesisKnowledgeMediatingMicroarray AnalysisMolecularMusNR4A1 geneNatureNeoplasmsNuclear Orphan ReceptorPathogenicityPathway interactionsPatientsPlayRoleSequence AnalysisSignal PathwayStem cellsStressTestingTissuesTransgenic OrganismsTreatment EfficacyTumor Suppressor ProteinsXenograft procedureagedbasebeta catenincasein kinasechromatin modificationchromosome 5q lossdosagegenome-widehematopoietic stem cell expansionhematopoietic stem cell quiescencehematopoietic stem cell self-renewalimprovedin vivoinsightknock-downloss of functionmembernew therapeutic targetnovelself-renewaltranscription factor
项目摘要
Abstract The molecular mechanism of clonal dominance in del(5q) MDS
Myelodysplastic syndrome (MDS) is a clonal stem cell disease, characterized by
ineffective hematopoiesis. Sequence analysis provides direct evidence that almost all bone
marrow cells are clonally derived in MDS. How the initiating MDS stem cell outcompetes normal
hematopoietic stem cells (HSCs) and grows to become dominant in the neoplasm is poorly
understood. Explaining how MDS evolves can help us to develop new strategies to improve the
therapy of MDS by targeting early molecular events in HSCs in MDS. Deletion of chromosome
5q [del(5q)] is one of the most common cytogenetic abnormalities in MDS and therapy-related
MDS. We found that the expression of FOXM1, a member of the forkhead family of transcription
factors, is reduced to approximately 50-60% of normal expression in CD34+ cells from del(5q)
MDS patients. Via loss of function studies, we recently identified a previously unrecognized
function of Foxm1 in hematopoietic stem and progenitor cells (HSPCs). In contrast to its known
function as a pro-proliferation factor in other tissues, conditional deletion of Foxm1 reduces
HSC quiescence, leading to disruption of HSC self-renewal. Our preliminary results revealed
that Foxm1 haploinsufficiency promoted HSC exit from quiescence but induced HSC expansion
with a competitive repopulation advantage. In addition, we identified orphan nuclear receptors
as new down-stream targets of Foxm1 in HSPCs. Orphan nuclear receptors are important
regulators of HSC quiescence and self-renewal and are recognized as novel tumor suppressors
of hematological malignancies. We found that FOXM1 and its downstream targets were all
down-regulated in CD34+ HSPCs from del (5q) MDS patients. Thus, we hypothesize that
moderate downregulation of FOXM1-mediated pathways plays a critical role in establishing
clonal dominance of MDS stem cell in del(5q) MDS patients and that FOXM1 can be targeted
for eliminating MDS stem cells in del(5q) patients. To test this hypothesis, we will 1) determine
the pathogenic role of Foxm1 downregulation in the development of MDS; 2) investigate the
molecular mechanisms that mediate gene dosage-dependent effects of Foxm1 in regulating
HSC quiescence, survival and self-renewal; and 3) determine the upstream pathway that
regulates Foxm1 expression in HSPCs.
We expect that our studies will uncover a dose-dependent role of Foxm1 as a novel
critical regulator of HSC maintenance as well as a novel pathogenic role of Foxm1 in the
development of MDS. We expect to identify novel molecular mechanisms that regulate HSC
quiescence, survival and self-renewal. These studies will provide mechanistic insights into the
acquisition of clonal advantage by MDS stem cells at early stages of del(5q) MDS. Our studies
likely will lead to the identification of more effective therapeutic strategies for eliminating
disease-propagating cells at early stages of del(5q) MDS by targeting FOXM1.
摘要 del(5 q)MDS克隆优势的分子机制
骨髓增生异常综合征(MDS)是一种克隆性干细胞疾病,其特征在于:
无效造血序列分析提供了直接证据表明几乎所有的骨骼
骨髓细胞在MDS中克隆衍生。如何启动MDS干细胞胜过正常
造血干细胞(HSC)和生长成为占主导地位的肿瘤是差
明白解释MDS如何演变可以帮助我们制定新的战略,以改善
通过靶向MDS中HSC中的早期分子事件来治疗MDS。号染色体缺失
5 q [del(5 q)]是MDS中最常见的细胞遗传学异常之一,
MDS我们发现FOXM 1的表达,FOXM 1是转录叉头家族的成员,
在来自del(5 q)的CD 34+细胞中,
MDS患者。通过功能丧失的研究,我们最近发现了一种以前未被认识到的
Foxm 1在造血干细胞和祖细胞(HSPC)中的功能。与其已知的
在其他组织中作为促增殖因子发挥作用,Foxm 1的条件性缺失减少了
HSC静止,导致HSC自我更新中断。我们的初步结果显示
Foxm 1单倍不足促进HSC从静止状态退出,但诱导HSC扩增,
有竞争力的繁殖优势。此外,我们还鉴定了孤儿核受体,
作为HSPC中Foxm 1的新下游靶点。孤儿核受体很重要
HSC静止和自我更新的调节剂,被认为是新的肿瘤抑制剂
血液系统恶性肿瘤我们发现FOXM 1及其下游靶点都是
在来自del(5 q)MDS患者的CD 34 + HSPC中下调。因此,我们假设,
FOXM 1介导的通路的适度下调在建立一种新的免疫应答机制中起着关键作用。
在del(5 q)MDS患者中MDS干细胞的克隆优势以及FOXM 1可以被靶向
为了验证这一假设,我们将1)确定
Foxm 1下调在MDS发展中的致病作用; 2)研究Foxm 1下调在MDS发病中的作用。
调节Foxm 1基因剂量依赖性作用的分子机制
HSC静止、存活和自我更新;以及3)确定
调节HSPC中Foxm 1的表达。
我们希望我们的研究将揭示Foxm 1作为一种新的剂量依赖性作用。
HSC维持的关键调节因子以及Foxm 1在HSC损伤中的新致病作用。
MDS的发展。我们希望能发现新的调控HSC的分子机制
静止、生存和自我更新。这些研究将提供机械的见解,
在del(5 q)MDS的早期阶段通过MDS干细胞获得克隆优势。我们的研究
可能会导致确定更有效的治疗策略,消除
在del(5 q)MDS的早期阶段通过靶向FOXM 1的疾病传播细胞。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TFII-I/Gtf2i and Erythro-Megakaryopoiesis.
- DOI:10.3389/fphys.2020.590180
- 发表时间:2020
- 期刊:
- 影响因子:4
- 作者:Gurumurthy A;Wu Q;Nar R;Paulsen K;Trumbull A;Fishman RC;Brand M;Strouboulis J;Qian Z;Bungert J
- 通讯作者:Bungert J
Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response.
- DOI:10.1093/nar/gkab415
- 发表时间:2021-06-04
- 期刊:
- 影响因子:14.9
- 作者:Yu F;Wei J;Cui X;Yu C;Ni W;Bungert J;Wu L;He C;Qian Z
- 通讯作者:Qian Z
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhijian Qian其他文献
Zhijian Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhijian Qian', 18)}}的其他基金
The Novel Role and Mechanism of RBM33 in Leukemogenesis
RBM33 在白血病发生中的新作用和机制
- 批准号:
10343898 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The role of ALKBH5-mediated RNA demethylation in the maintenance of genomic stability in HSPCs
ALKBH5 介导的 RNA 去甲基化在维持 HSPC 基因组稳定性中的作用
- 批准号:
10445661 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
Role of the TET1 short isoform in MDS development and maintenance
TET1 短亚型在 MDS 开发和维护中的作用
- 批准号:
10363322 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The role of ALKBH5-mediated RNA demethylation in the maintenance of genomic stability in HSPCs
ALKBH5 介导的 RNA 去甲基化在维持 HSPC 基因组稳定性中的作用
- 批准号:
10669161 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The role of YTHDC1 in normal and malignant hematopoiesis
YTHDC1在正常和恶性造血中的作用
- 批准号:
10620127 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The Novel Role and Mechanism of RBM33 in Leukemogenesis
RBM33 在白血病发生中的新作用和机制
- 批准号:
10623163 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
Role of the TET1 short isoform in MDS development and maintenance
TET1 短亚型在 MDS 开发和维护中的作用
- 批准号:
10552668 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The role of YTHDC1 in normal and malignant hematopoiesis
YTHDC1在正常和恶性造血中的作用
- 批准号:
10361997 - 财政年份:2022
- 资助金额:
$ 34.31万 - 项目类别:
The role of ALKBH5-mediated RNA demethylation in the maintenance of genomic stability in HSPCs
ALKBH5 介导的 RNA 去甲基化在维持 HSPC 基因组稳定性中的作用
- 批准号:
10476005 - 财政年份:2021
- 资助金额:
$ 34.31万 - 项目类别:
The molecular mechanism of clonal dominance in 5q(del) MDS
5q(del)MDS克隆优势的分子机制
- 批准号:
9312796 - 财政年份:2016
- 资助金额:
$ 34.31万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 34.31万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 34.31万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 34.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 34.31万 - 项目类别:
Studentship














{{item.name}}会员




