Bright and Fast Sensors for Radioluminescence Microscopy of Single Living Cells
用于单个活细胞放射发光显微镜的明亮且快速的传感器
基本信息
- 批准号:8712913
- 负责人:
- 金额:$ 18.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAffectBehaviorBeta ParticleCancer BiologyCell Culture TechniquesCell CycleCellsCellular MorphologyCeramicsChargeCoupledDepositionDevelopmentDevicesDrug resistanceEnvironmentEquipmentEuropiumFeasibility StudiesFilmGene ExpressionGlassGoalsHematologyHospitalsImageImmuneIn SituIndividualLifeLightLutetiumMeasuresMethodsMicroscopeMicroscopyMorphologyOpticsOutputOxidesPerformancePhasePhotonsPlayPopulationPositron-Emission TomographyPowder dose formProcessPropertyRadioRadionuclide ImagingRadiopharmaceuticalsRefractoryReportingResearchResearch PersonnelResolutionRoleSpecimenStem cellsSystemTechniquesTechnologyTestingTherapeuticTissuesUniversitiesVariantVisionWorkWritingcancer stem cellcell injurycharge coupled device cameracommercializationdensitydetectorfluorescence microscopeimaging modalityimprovedinnovationinnovative technologiesinstrumentluminescencenovel strategiesoncologypublic health relevancequantumradiotracersensortechnological innovationtooltumoruptake
项目摘要
DESCRIPTION (provided by applicant): Radioluminescence microscopy is a newly developed method for imaging radionuclide uptake in live single cells. Current methods of radiotracer imaging are limited to measuring the average radiotracer uptake in large cell populations and, as a result, lack the ability to quantify cell-to-cell variations. With the new radio- luminescence
microscopy technique, however, it is possible to visualize radiotracer uptake within individual cells in a fluorescence microscope environment. The goal of this project is to develop a revolutionary innovation in a key component used in this technique. This key part in the radioluminescence microscopy imaging system is the scintillator that converts ionizing beta radiation into optical photons that are imaged with a CCD camera. In this work, an improved scintillator will be developed, specifically for use in a radioluminescence microscopy system that will offer unprecedented sensitivity and spatial resolution. Such a technological advance has the potential for widespread use in research and in hospitals, providing a means to characterize how properties specific to individual cells (e.g. gene expression, cell cycle, cell damage, and cel morphology) affect the uptake and retention of radiotracers. Higher spatial resolution will allow single cells to be probed in situ, in dense tissue sections, and will dramatically improve the throughput of the instruments, allowing thousands of cells to be imaged at once. These new capabilities will be critical to help researchers better understand the behavior of rare single cels such as stem cells or drug-resistant cells. The objectives of this Phase I project is the demonstrate the feasibility of successfully depositing of thin (micron-scale) films of a highly dense transparent scintillator, europium-activated lutetium oxide (Lu2O3:Eu). This material has the highest density (9.5 g/cm3) of any known scintillator, high effective atomic number (67.3), excellent light output, and an emission wavelength (610 nm) for which Si sensors have a very high quantum efficiency. Select scintillator specimens will be integrated into a radioluminescence microscope demonstrating improved performance in this exciting new imaging system. Ultimately, the goal is to commercialize this technology as a radioluminescence-enabled imaging dish, which will have a standard form factor but will include a thin coating of the Lu2O3:Eu scintillator at the bottom. As such, the technological innovation will provide a valuable new tool to researchers allowing unprecedented localization of radiotracer uptake down to single living cells. This new innovative technology will have widespread use as an addition to current fluorescence microscope instruments in use today and thus will have great commercial potential.
描述(由申请人提供):射线发光显微镜是一种新开发的方法,用于对活细胞中的放射性核素摄取进行成像。当前的放射性示意剂成像方法仅限于测量大细胞群体中的平均放射性示意剂摄取,因此缺乏量化细胞间变化的能力。随着新的放射发光
但是,显微镜技术可以在荧光显微镜环境中可视化单个细胞内的放射性示意剂的吸收。该项目的目的是在此技术中使用的关键组件中开发革命性的创新。辐射发光显微镜成像系统中的这个关键部分是将电离β辐射转换为使用CCD摄像头成像的光学光子的闪光灯。在这项工作中,将开发改进的闪光灯,专门用于用于辐射发光显微镜系统,该系统将提供前所未有的灵敏度和空间分辨率。这种技术进步具有在研究和医院中广泛使用的潜力,提供了一种表征对单个细胞特异性特定的特定特定的手段(例如基因表达,细胞周期,细胞损伤和CEL形态)如何影响放射性肌动物的摄取和保留。较高的空间分辨率将允许在密集的组织切片中原位探测单个细胞,并将显着改善仪器的吞吐量,从而立即将数千个细胞成像。这些新功能对于帮助研究人员更好地了解罕见的单个CELS(例如干细胞或耐药细胞)的行为至关重要。 该阶段项目的目标是证明了成功沉积高度致密透明闪烁体的薄(微米尺度)膜的可行性,Europium激活的氧化lutetium(Lu2O3:EU)。该材料的密度最高(9.5 g/cm3)的任何已知闪光灯,高效原子数(67.3),出色的光输出和发射波长(610 nm),SI传感器具有很高的量子效率。精选的闪光灯标本将集成到放射性发光显微镜中,以表明在这个令人兴奋的新成像系统中的性能提高。 最终,目标是将这项技术作为启用放射性发光的成像盘将其商业化,该菜肴将具有标准的外形颜色,但将包括底部的Lu2O3:EU闪烁体的薄涂层。因此,技术创新将为研究人员提供一个有价值的新工具,从而使放射性示意剂摄取的前所未有的定位降低到单个活细胞。这项新的创新技术将广泛用作当前使用的当前荧光显微镜仪器的补充,因此具有巨大的商业潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STUART R MILLER其他文献
STUART R MILLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STUART R MILLER', 18)}}的其他基金
Directional sensor for radioluminescence microscopy of next-generation tumor models
用于下一代肿瘤模型放射发光显微镜的定向传感器
- 批准号:
10324422 - 财政年份:2021
- 资助金额:
$ 18.67万 - 项目类别:
Bright and Fast Sensors for Radioluminescence Microscopy of Single Living Cells
用于单个活细胞放射发光显微镜的明亮且快速的传感器
- 批准号:
9135873 - 财政年份:2014
- 资助金额:
$ 18.67万 - 项目类别:
Bright and Fast Sensors for Radioluminescence Microscopy of Single Living Cells
用于单个活细胞放射发光显微镜的明亮且快速的传感器
- 批准号:
9267506 - 财政年份:2014
- 资助金额:
$ 18.67万 - 项目类别:
相似国自然基金
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氢对镁中缺陷演化行为影响规律及机制的原位定量研究
- 批准号:52301137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
指向提议者的共情关怀对第三方惩罚行为的影响:心理、脑与计算机制
- 批准号:32371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
- 批准号:72302101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the role of trained immunity in kidney transplant patients
阐明训练有素的免疫力在肾移植患者中的作用
- 批准号:
10642596 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Deconvolution of Physicochemical Properties Contributing to Passive Diffusion of Depsipeptides
有助于缩酚肽被动扩散的物理化学性质的反卷积
- 批准号:
10607589 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
The Neural Mechanisms Underlying Categorical Decision Making
分类决策背后的神经机制
- 批准号:
10750000 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Leveraging artificial intelligence methods and electronic health records for pediatric pharmacovigilance
利用人工智能方法和电子健康记录进行儿科药物警戒
- 批准号:
10750074 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Center for SOcial CApital (SOCA): Promoting Multigenerational Health
社会资本中心 (SOCA):促进多代健康
- 批准号:
10661344 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别: