The Spread of Noisy Information in Corneal Epithelial Wound Response Signaling
角膜上皮伤口反应信号中噪声信息的传播
基本信息
- 批准号:9378292
- 负责人:
- 金额:$ 36.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisBiochemicalBiological AssayBiosensorBlindnessCell DensityCellsCicatrixCoculture TechniquesCommunicationComplementComplexComputer SimulationCorneaCorneal InjuryDataDevelopmentDevicesDiffusionDissectionEpidermal Growth FactorEpithelialEpitheliumFluorescence Resonance Energy TransferFutureGenerationsGleanGoalsGrowth Factor GeneHealedHealthHumanHydrolysisImageImaging technologyInformation TheoryInjuryKineticsKnowledgeLeadLifeLiquid substanceMAP Kinase GeneManuscriptsMeasurementMicrofluidic MicrochipsMicrofluidicsModelingMolecularMultiple TraumaNoiseNucleotidesParacrine CommunicationPathway interactionsPharmacologyPlayProcessReactionRegulationRoleScienceSignal TransductionSignaling MoleculeSiteSpatial DistributionSystemTechnologyTestingTherapeuticTimeTissuesVisionWorkbasecorneal epitheliumdesignextracellularfeedinghazinghealinginsightmathematical methodsmathematical modelmonolayermulti-scale modelingnext generationnovelnovel therapeuticsparacrinepreventprogramsresponsesuccesstherapy developmenttooluptakewoundwound healing
项目摘要
DESCRIPTION (provided by applicant): Cornea wounds can lead to scarring, hazing, and subsequent vision loss. Several biochemical signals, including extracellular nucleotides and growth factors play key roles in activation of wound healing programs. The discoveries of the molecular identities of wound induced signals prompted the development of therapies that aim to prolong the natural healing programs in order to minimize the danger of injury induced vision loss. However, these therapeutic approaches had only limited success. The lack of a detailed quantitative mechanistic understanding of the regulation of these paracrine signaling molecules prevents the critical assessment of current therapies and the development of the next generation of quantitative systems pharmacology therapeutic approaches. The goal of this work is to determine the regulatory mechanism that controls the spatio-temporal propagation of two key paracrine signaling molecules: ATP and HB-EGF. Each plays an essential role in the activation of wound healing programs. This proposal will capitalize on a novel microfluidics-based wounding platform we recently developed. The new device enables highly controlled wounding of epithelial monolayers without any fluid mixing and thereby generates real-time data of the spatio-temporal propagation of the Ca2+ and Erk pathways. We will use the new device in synergy with multiple computational approaches to dissect the paracrine signaling regulatory network that controls the propagation of wound induced signals. The specific aims are: (1) Elucidate the mechanism that controls the spread of initial ATP signals. (2) Dissect the mechanisms responsible for the spatial propagation of Erk pathway activation. (3) Determine the function of paracrine signals in reducing the noise in Erk pathway activation. In aims 1 and 2 we will construct and independently calibrate multi-scale tissue-level models that combine intercellular ATP and HB-EGF dynamics with intracellular the kinetics of Ca2+ and Erk pathway activation. The models will be used to test multiple hypotheses on the mechanism that controls the spatio-temporal propagation of ATP and HB-EGF signals to activate wound response signaling. In aim 3 we will use an information-theory approach to analyze test how the identified mechanisms contribute to the generation of a robust spatial distribution of Erk activation. The successful completion of these aims will close an important knowledge gap on the complex mechanism that regulates the activation of wound healing programs. The predictive mathematical models that we will construct and experimentally corroborate will provide an important tool in the design of future therapies that aim to augment existing wound healing programs to prevent vision loss due to corneal injury.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roy Wollman其他文献
Roy Wollman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roy Wollman', 18)}}的其他基金
Identify mechanisms of dedifferentiation during limbal stem cell niche reconstruction.
确定角膜缘干细胞生态位重建期间的去分化机制。
- 批准号:
9902499 - 财政年份:2019
- 资助金额:
$ 36.59万 - 项目类别:
The Spread of Noisy Information in Corneal Epithelial Wound Response Signaling
角膜上皮伤口反应信号中噪声信息的传播
- 批准号:
9414041 - 财政年份:2015
- 资助金额:
$ 36.59万 - 项目类别:
Pathogen detection signaling network analysis of selectivity and sensitivity
病原体检测信号网络的选择性和灵敏度分析
- 批准号:
7677154 - 财政年份:2009
- 资助金额:
$ 36.59万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Standard Grant