A systems analysis of drug tolerance in Mycobacterium tuberculosis

结核分枝杆菌耐药性的系统分析

基本信息

  • 批准号:
    9220609
  • 负责人:
  • 金额:
    $ 87.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-12-01 至 2021-11-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY This project will address the critical need for new and effective antitubercular drugs. Our primary objective is to elucidate the mechanisms by which Mycobacterium tuberculosis tolerates antitubercular drug treatment. Our motivating hypothesis is that M. tuberculosis tolerates drug induced stress by differentially regulating detoxification enzymes, efflux pumps, metabolic activity, pellicle-forming factors, and cell wall remodeling systems. Further, we postulate that a secondary drug targeting one or few regulators of these tolerance strategies will potentiate the primary drug-treatment, and potentially reduce the emergence of resistance. We propose a systems biology approach to generate a network perspective of drug-induced tolerance mechanisms and how they are coordinated by one or few regulators that could be targeted for overcoming drug-specific tolerance using combinatorial treatment regimens. Hence, the innovation of our proposed research emerges from integrating network characterization of drug- specific tolerance mechanisms into the rational discovery of novel drug combinations. In Aim 1, we will transcriptionally profile M. tuberculosis following treatment with ten selected drugs (primary drugs). Using techniques developed in our laboratory, differentially expressed genes will be mapped onto a systems-scale gene regulatory network model of M. tuberculosis to infer drug-specific tolerance sub-networks and elucidate key regulators. We will also identify tolerance sub-networks by generating genome-wide fitness profiles in the presence of the selected primary drugs. Drug-associated fitness defects will reveal genes that are important for dealing with drug-induced stress and are hypothesized to cluster together in drug-specific tolerance sub-networks. In Aim 2, we will transcriptionally profile ~250 secondary drugs and perform combination high-throughput screens of all primary and secondary drug combinations. Data from these studies will be used to iteratively refine the model and develop a machine learning algorithm to identify gene- and network-level features that are predictive of synergistic drug interactions. Finally, mechanism of synergistic drug combinations will be characterized by selectively perturbing the predicted regulators of the tolerance sub-networks. This project will propel the development of systems biology tools to accurately predict novel synergistic drug combinations, thereby guiding experimental assessment and accelerating the delivery of new treatments to patients with tuberculosis infection.
项目概要 该项目将满足对新型有效抗结核药物的迫切需求。我们的小学 目的是阐明结核分枝杆菌的耐受机制 抗结核药物治疗。我们的动机假设是结核分枝杆菌耐受药物 通过差异调节解毒酶、外排泵、代谢来诱导应激 活性、薄膜形成因子和细胞壁重塑系统。此外,我们假设 针对这些耐受策略的一个或几个调节因子的次要药物将增强 主要药物治疗,并可能减少耐药性的出现。我们提出一个 系统生物学方法产生药物诱导耐受的网络视角 机制以及如何由一个或几个可能针对的监管机构进行协调 使用组合治疗方案克服药物特异性耐受性。因此, 我们提出的研究的创新来自于药物网络特征的整合 将特定的耐受机制纳入新药物组合的合理发现中。在目标 1 中, 我们将在十种选定药物治疗后对结核分枝杆菌进行转录分析 (主要药物)。使用我们实验室开发的技术,差异表达基因 将被映射到结核分枝杆菌的系统规模基因调控网络模型上以推断 药物特异性耐受子网络并阐明关键监管机构。我们还将确定 通过在存在的情况下生成全基因组适应度概况来构建耐受子网络 选定的主要药物。与药物相关的健康缺陷将揭示对健康至关重要的基因 处理药物引起的压力,并假设在药物特异性中聚集在一起 容忍子网络。在目标 2 中,我们将转录分析约 250 种次要药物和 对所有主要和次要药物组合进行组合高通量筛选。 这些研究的数据将用于迭代完善模型并开发机器 学习算法来识别可预测协同作用的基因和网络级特征 药物相互作用。最后,协同药物组合的机制将被表征为 有选择地扰动容差子网络的预测调节器。该项目将 推动系统生物学工具的发展以准确预测新型协同药物 组合,从而指导实验评估并加速新产品的交付 对结核感染患者进行治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nitin S Baliga其他文献

Visualization of omics data for systems biology
系统生物学中组学数据的可视化
  • DOI:
    10.1038/nmeth.1436
  • 发表时间:
    2010-03-01
  • 期刊:
  • 影响因子:
    32.100
  • 作者:
    Nils Gehlenborg;Seán I O'Donoghue;Nitin S Baliga;Alexander Goesmann;Matthew A Hibbs;Hiroaki Kitano;Oliver Kohlbacher;Heiko Neuweger;Reinhard Schneider;Dan Tenenbaum;Anne-Claude Gavin
  • 通讯作者:
    Anne-Claude Gavin
Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1
  • DOI:
    10.1186/gb-2004-5-8-r52
  • 发表时间:
    2004-07-12
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Richard Bonneau;Nitin S Baliga;Eric W Deutsch;Paul Shannon;Leroy Hood
  • 通讯作者:
    Leroy Hood

Nitin S Baliga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nitin S Baliga', 18)}}的其他基金

Systems biology of intratumoral heterogeneity in glioblastoma
胶质母细胞瘤瘤内异质性的系统生物学
  • 批准号:
    10366692
  • 财政年份:
    2022
  • 资助金额:
    $ 87.16万
  • 项目类别:
Systems biology of intratumoral heterogeneity in glioblastoma
胶质母细胞瘤瘤内异质性的系统生物学
  • 批准号:
    10544035
  • 财政年份:
    2022
  • 资助金额:
    $ 87.16万
  • 项目类别:
A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
  • 批准号:
    10159858
  • 财政年份:
    2019
  • 资助金额:
    $ 87.16万
  • 项目类别:
A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
  • 批准号:
    10425375
  • 财政年份:
    2019
  • 资助金额:
    $ 87.16万
  • 项目类别:
A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
  • 批准号:
    10627994
  • 财政年份:
    2019
  • 资助金额:
    $ 87.16万
  • 项目类别:
Modeling Core
建模核心
  • 批准号:
    10339372
  • 财政年份:
    2018
  • 资助金额:
    $ 87.16万
  • 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
  • 批准号:
    10654540
  • 财政年份:
    2016
  • 资助金额:
    $ 87.16万
  • 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
  • 批准号:
    10059161
  • 财政年份:
    2016
  • 资助金额:
    $ 87.16万
  • 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
  • 批准号:
    10367797
  • 财政年份:
    2016
  • 资助金额:
    $ 87.16万
  • 项目类别:
Modeling Core
建模核心
  • 批准号:
    8577280
  • 财政年份:
    2013
  • 资助金额:
    $ 87.16万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 87.16万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 87.16万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 87.16万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 87.16万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 87.16万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 87.16万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 87.16万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 87.16万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 87.16万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 87.16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了