A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
基本信息
- 批准号:10654540
- 负责人:
- 金额:$ 88.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdoptedAlgorithmsBiochemical PathwayBioreactorsCRISPR interferenceCause of DeathCellsCessation of lifeCharacteristicsChemicalsClinicalCommunicable DiseasesComplexCuesDevelopmentDiseaseDrug CombinationsDrug TargetingDrug ToleranceDrug resistanceEnvironmentEssential GenesEvolutionExperimental DesignsGene Expression ProfileGeneticGenetic TranscriptionGrowthHeterogeneityInfectionInfectious AgentInterventionMachine LearningMacrophageMalignant NeoplasmsMetabolicModelingMycobacterium tuberculosisOutcomePharmaceutical PreparationsPharmacotherapyPhenotypePhysiologic tolerancePhysiologicalPhysiological AdaptationPopulationPopulation HeterogeneityPredispositionProgress ReportsPublicationsRecurrent diseaseRegimenReportingResistanceResolutionSortingStructureSystemSystems AnalysisSystems BiologyTechniquesTechnologyTestingTimeTuberculosisbiomarker panelcombinatorialdisease heterogeneityemerging antimicrobial resistancenetwork modelsnew technologynew therapeutic targetnovelnovel drug combinationpathogenpromoterresponsesupport networktranscription factortranscriptometreatment durationtuberculosis drugstuberculosis treatment
项目摘要
PROPOSAL SUMMARY
This project will address the critical need for accelerated development of multidrug regimen to achieve fast and
complete clearance of Mycobacterium tuberculosis (Mtb), thereby lowering the likelihood for the emergence of
antimicrobial resistance. Mtb dynamically adapts to extra- and intracellular host environments by adopting
heterogeneous physiologic states, with varied susceptibility profiles to frontline antitubercular drugs. In the first
four years of the R01, we have made progress towards dissecting this capability of Mtb by developing
technologies to (i) uncover regulatory mechanisms that drive the pathogen into dormant states in host-simulated
environments (controlled bioreactors) and directly within host cells (Path-seq), (ii) sort and characterize at single
cell resolution translationally-dormant persister-like subpopulations within isogenic cultures (PerSort), (iii)
uncover and characterize context-specific vulnerabilities within regulatory and metabolic networks (EGRIN2 and
PRIME), and (iv) rationally formulate novel synergistic drug combinations (DRonA and MLSynergy). Using these
capabilities and their applications reported across sixteen publications, we discovered that heterogeneous drug
tolerant subpopulations co-exist within an isogenic culture of Mtb, even in the absence of drug treatment.
Furthermore, we discovered that stressful environments and treatments activate additional drug tolerance
networks, which may potentiate the emergence of resistance. Based on these findings, we hypothesize that we
can achieve fast and complete clearance of Mtb infection with a combination of drugs that target vulnerabilities
across heterogeneous drug tolerant subpopulations that co-exist in varied combinations and proportions
depending on host- and treatment-contexts. To test this hypothesis, we will mechanistically characterize how the
heterogeneous population structure of Mtb changes dynamically in response to host-relevant environmental cues
and drug treatments. We will then uncover and characterize vulnerabilities within regulatory and metabolic
networks that support and drive transitions to drug tolerant states. Using machine-learning techniques, we will
predict and validate synergistic drug combinations targeting multiple vulnerabilities to cripple heterogeneous
environment- and drug-induced states of Mtb. By performing time kill curves, we will investigate whether
validated combinatorial interventions accomplish complete and faster clearance of heterogeneous Mtb
subpopulations in diverse contexts. Altogether, the proposed activities will identify novel drug targets, and novel
drug combinations for fast and complete clearance of a heterogeneous Mtb population. Given that phenotypic
heterogeneity as a means for tolerating and resisting drugs is a universal phenomenon, the systems biology
framework developed in this project will be generalizable to the discovery of effective multidrug regimen for
diverse infectious diseases and even cancers.
提案摘要
该项目将满足加速多饮用方案发展以实现快速发展的关键需求
结核分枝杆菌(MTB)的完全清除,从而降低了出现的可能性
抗菌耐药性。 MTB通过采用而动态地适应细胞内和细胞内主机环境
异质生理状态,具有多样化的抗抗结核药物的敏感性。在第一个
在R01的四年中,我们通过开发来剖析MTB的这种能力取得了进步
(i)发现的技术机制,这些机制将病原体驱动到宿主模拟的休眠状态
环境(受控的生物反应器)和直接在宿主单元内(路径隔板),(ii)排序并在单一表征
细胞分辨率在等生培养物(persort)内翻译持续性的持久性亚群,(iii)
在监管和代谢网络中发现并表征了上下文特定的漏洞(Egrin2和
Prime)和(iv)合理提出新型协同药物组合(Drona和Mlsynergy)。使用这些
能力及其在16个出版物中报道的应用程序,我们发现异质性药物
耐受的亚群在MTB的等源性培养物中共存,即使在没有药物治疗的情况下。
此外,我们发现压力很大的环境和治疗可以激活额外的药物耐受性
网络,这可能会增强电阻的出现。根据这些发现,我们假设我们
可以通过针对脆弱性的药物组合快速而完全清除MTB感染
在各种组合和比例中共存的异构药物耐受亚群中
取决于宿主和治疗文本。为了检验这一假设,我们将从机械上表征
MTB的异质种群结构是针对与宿主相关的环境线索动态变化的
和药物治疗。然后,我们将发现并表征监管和代谢中的漏洞
支持并推动向药物耐受状态过渡的网络。使用机器学习技术,我们将
预测和验证针对多种脆弱性的协同药物组合削弱异质
环境和药物诱导的MTB状态。通过执行时间杀死曲线,我们将调查是否
经过验证的组合干预措施完成了异质MTB的完整和更快的清除
在不同情况下的亚群。拟议的活动总之将确定新的药物靶标和新颖
用于快速和完全清除异质MTB种群的药物组合。鉴于该表型
异质性作为耐受和抵抗药物的一种手段是一种普遍现象,即系统生物学
该项目中开发的框架将可以推广到发现有效的多药方案的
多种传染病甚至癌症。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inference of Bacterial Small RNA Regulatory Networks and Integration with Transcription Factor-Driven Regulatory Networks.
- DOI:10.1128/msystems.00057-20
- 发表时间:2020-06-02
- 期刊:
- 影响因子:6.4
- 作者:Arrieta-Ortiz ML;Hafemeister C;Shuster B;Baliga NS;Bonneau R;Eichenberger P
- 通讯作者:Eichenberger P
Intricate Genetic Programs Controlling Dormancy in Mycobacterium tuberculosis.
- DOI:10.1016/j.celrep.2020.107577
- 发表时间:2020-04-28
- 期刊:
- 影响因子:8.8
- 作者:Peterson EJR;Abidi AA;Arrieta-Ortiz ML;Aguilar B;Yurkovich JT;Kaur A;Pan M;Srinivas V;Shmulevich I;Baliga NS
- 通讯作者:Baliga NS
Transcriptome signature of cell viability predicts drug response and drug interaction in Mycobacterium tuberculosis.
- DOI:10.1016/j.crmeth.2021.100123
- 发表时间:2021-12-20
- 期刊:
- 影响因子:0
- 作者:Srinivas V;Ruiz RA;Pan M;Immanuel SRC;Peterson EJR;Baliga NS
- 通讯作者:Baliga NS
A systems-level gene regulatory network model for Plasmodium falciparum.
- DOI:10.1093/nar/gkaa1245
- 发表时间:2021-05-21
- 期刊:
- 影响因子:14.9
- 作者:Neal ML;Wei L;Peterson E;Arrieta-Ortiz ML;Danziger SA;Baliga NS;Kaushansky A;Aitchison JD
- 通讯作者:Aitchison JD
Genetic program activity delineates risk, relapse, and therapy responsiveness in multiple myeloma.
- DOI:10.1038/s41698-021-00185-0
- 发表时间:2021-06-28
- 期刊:
- 影响因子:7.9
- 作者:Wall MA;Turkarslan S;Wu WJ;Danziger SA;Reiss DJ;Mason MJ;Dervan AP;Trotter MWB;Bassett D;Hershberg RM;Lomana ALG;Ratushny AV;Baliga NS
- 通讯作者:Baliga NS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nitin S Baliga其他文献
Nitin S Baliga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nitin S Baliga', 18)}}的其他基金
Systems biology of intratumoral heterogeneity in glioblastoma
胶质母细胞瘤瘤内异质性的系统生物学
- 批准号:
10366692 - 财政年份:2022
- 资助金额:
$ 88.63万 - 项目类别:
Systems biology of intratumoral heterogeneity in glioblastoma
胶质母细胞瘤瘤内异质性的系统生物学
- 批准号:
10544035 - 财政年份:2022
- 资助金额:
$ 88.63万 - 项目类别:
A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
- 批准号:
10159858 - 财政年份:2019
- 资助金额:
$ 88.63万 - 项目类别:
A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
- 批准号:
10425375 - 财政年份:2019
- 资助金额:
$ 88.63万 - 项目类别:
A systems approach to manipulate microbial adaptation to structured environments
操纵微生物适应结构化环境的系统方法
- 批准号:
10627994 - 财政年份:2019
- 资助金额:
$ 88.63万 - 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
- 批准号:
9220609 - 财政年份:2016
- 资助金额:
$ 88.63万 - 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
- 批准号:
10059161 - 财政年份:2016
- 资助金额:
$ 88.63万 - 项目类别:
A systems analysis of drug tolerance in Mycobacterium tuberculosis
结核分枝杆菌耐药性的系统分析
- 批准号:
10367797 - 财政年份:2016
- 资助金额:
$ 88.63万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 88.63万 - 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
- 批准号:
10593480 - 财政年份:2023
- 资助金额:
$ 88.63万 - 项目类别:
Tele-Sox: A Tele-Medicine solution based on wearables and gamification to prevent Venous thromboembolism in Oncology Geriatric Patients
Tele-Sox:基于可穿戴设备和游戏化的远程医疗解决方案,用于预防肿瘤老年患者的静脉血栓栓塞
- 批准号:
10547300 - 财政年份:2023
- 资助金额:
$ 88.63万 - 项目类别:
Enhancing Drug Discovery Research by Free Energy Modeling
通过自由能建模加强药物发现研究
- 批准号:
10730788 - 财政年份:2023
- 资助金额:
$ 88.63万 - 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
- 批准号:
10643313 - 财政年份:2023
- 资助金额:
$ 88.63万 - 项目类别: