Positive and negative regulation of the cytokinesis contractility controller
胞质分裂收缩性控制器的正向和负向调节
基本信息
- 批准号:9610830
- 负责人:
- 金额:$ 4.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-02 至 2020-07-01
- 项目状态:已结题
- 来源:
- 关键词:ActinsAcuteAffectAffinityBehaviorBindingBiochemicalBiochemical PathwayBiological ProcessBiologyCardiac MyosinsCell ShapeCell divisionCell physiologyCellsChemicalsComplexContractile ProteinsCrosslinkerCytokinesisCytoskeletal ProteinsDataDevelopmentDevelopmental ProcessDictyosteliumDimerizationDiseaseDominant-Negative MutationEmbryonic DevelopmentEnvironmentEnzymesExcisionFeedbackFilamentFluorescenceGeneticGoalsHepatocyteHuman BiologyImageImmunoprecipitationIn VitroInterphaseLightLungMalignant neoplasm of pancreasMass Spectrum AnalysisMeasuresMechanicsMediatingMitotic spindleModelingMolecularMorphogenesisMyoblastsMyosin ATPaseMyosin Type IINeoplasm MetastasisOxidoreductasePost-Translational Protein ProcessingProcessProductionProteinsRegulationResolutionRoleScaffolding ProteinShapesSignal PathwaySignal TransductionSignaling ProteinSiteSpectrum AnalysisStressSystemTestingTissuesWorkbiophysical analysiscancer cellcell motilitycortexillin Icrosslinkdaughter cellgenetic regulatory proteingenetic selectionhuman diseasein vivoinsightloss of functionmechanical behaviormechanical forcemethylmalonatemutantnon-muscle myosinoverexpressionpropionyl-coenzyme Arecruitresponsescaffoldsensorsingle molecule
项目摘要
PROJECT SUMMARY
Every biological process, ranging from cell migration to embryogenesis and tissue morphogenesis, relies on a
cell’s ability to adapt to changing mechanical environments. While we understand many biochemical signaling
pathways involved, the mechanisms that are integrated to govern a cell’s response to mechanical forces
remain a mystery. Deciphering these interactions will shed light on the mechanical changes that drive both
normal and disease state processes. To reveal how the cell responds to various forces, the Robinson lab
studies Dictyostelium cytokinesis, a model shape change process by which one cell divides to form two
daughter cells. The lab has discovered that cytokinesis is driven by an integrated control system composed of
proteins that modulate their behavior in response to both mechanical and biochemical signals. Although we
know many of the players involved in the cytokinetic control system, their biochemical interactions that allow
force propagation through the cortical network are still unknown. My goal is to characterize the regulatory
mechanisms that characterize these interactions, which will be critical to elucidate the mechanisms of a cell’s
response to its mechanical environment. To identify the direct interactions that govern a cell’s mechanical
response, we performed immunoprecipitation followed by mass spectrometry on two key nodes of the
cytokinetic control system, the scaffolding protein IQGAP2 and the actin crosslinker cortexillin I. This approach
led to the discovery of potential binding partners of these nodes. Using a combination of Fluorescence Cross-
Correlation Spectroscopy (FCCS) and Single Molecule Pulldown (SiMPull), we have discovered a potential
mechanism of inhibition by a negative regulator of the system, IQGAP1. To further understand how IQGAP1
mediates inhibition, I will purify key cytoskeletal proteins and use quantitative biochemical approaches to
measure binding affinities and implement a chemically-inducible dimerization system to assess the inhibitory
activity of IQGAP1. In addition, I will use super-resolution imaging during both interphase and cytokinesis to
characterize alterations in complexes formed by these key cytoskeletal proteins that allow force transduction
through the network. Moreover, I will determine the cellular role of methylmalonate semialdehyde
dehydrogenase (mmsdh), which catalyzes the production of propionyl-coA. Mmsdh was identified as an
interactor of cortexillin I, but was also previously identified in a genetic selection in our lab. It is possible that
proteins may modified by propionylation, an underappreciated post-translational modification, which may
facilitate positive regulation of the cytokinetic control system. Through a combination of genetics, mass
spectrometry, and biophysical analyses, I will elucidate the cellular function of mmsdh. The work proposed
here will decipher the molecular mechanisms of positive and negative regulation of the contractile network.
This information will be critical for understanding the cell’s ability to sense and respond to mechanical forces,
yielding insight into both normal developmental processes, as well as disease state progression.
项目摘要
从细胞迁移到胚胎发生和组织形态发生的每个生物学过程都取决于
牢房能够适应不断变化的机械环境。虽然我们了解许多生化信号传导
涉及的途径,整合以控制电池对机械力的响应的机制
仍然是一个神秘的。解密这些相互作用将阐明驱动两者的机械变化
正常和疾病状态过程。为了揭示细胞对各种力的反应,罗宾逊实验室
研究dictyostelium cytoesis,一个模型形状变化过程,一个细胞通过该过程形成两个细胞
子细胞。该实验室发现细胞因子是由组成的集成控制系统驱动的
根据机械和生化信号调节其行为的蛋白质。虽然我们
了解许多参与细胞动力学控制系统的参与者,他们的生化相互作用允许
通过皮质网络的力传播仍然未知。我的目标是表征监管
表征这些相互作用的机制,这对于阐明细胞的机制至关重要
对其机械环境的反应。确定控制电池机械的直接互动
响应,我们进行了免疫沉淀,然后在两个关键节点上进行质谱。
细胞力学控制系统,脚手架蛋白IQGAP2和肌动蛋白交联CortexillinI。
导致发现了这些节点的潜在约束伙伴。结合荧光交叉
相关光谱(FCC)和单分子下拉(Simpull),我们发现了潜力
系统负调控因子抑制机制,IQGAP1。进一步了解IQGAP1
介导抑制作用,我将纯化关键的细胞骨架蛋白,并使用定量的生化方法进行
测量结合亲和力并实施化学诱导的二聚化系统以评估抑制
IQGAP1的活动。此外,我将在相间和细胞因子期间使用超分辨率成像
表征由这些关键的细胞骨架蛋白形成的复合物的变化,这些蛋白允许力转导
通过网络。此外,我将确定甲基甲酸半二醛的细胞作用
脱氢酶(MMSDH),催化丙酰辅酶A的产生。 MMSDH被确定为
Cortexillin I的相互作用者,但以前在我们实验室的遗传选择中也被鉴定出来。有可能
蛋白质可能会通过丙酰化修饰,丙酰化是一种未被充分重视的翻译后修饰,这可能
促进细胞动力学控制系统的积极调节。通过仿制药,质量的结合
光谱法和生物物理分析,我将阐明MMSDH的细胞功能。提出的工作
这里将破译收缩网络正和负调控的分子机制。
这些信息对于理解细胞感知和响应机械力的能力至关重要,
对正常发育过程以及疾病状态的进展产生深入了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Priyanka Kothari其他文献
Priyanka Kothari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Priyanka Kothari', 18)}}的其他基金
Positive and negative regulation of the cytokinesis contractility controller
胞质分裂收缩性控制器的正向和负向调节
- 批准号:
9769504 - 财政年份:2018
- 资助金额:
$ 4.45万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SSRP1/Sp-1转录调控的MFGE8通过SIRT6影响铁死亡在脓毒症急性肾损伤中的机制研究
- 批准号:82302418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人群mtDNA空间异质性对急性高原反应发病的影响机制研究
- 批准号:42377466
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
- 批准号:82360135
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 4.45万 - 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
$ 4.45万 - 项目类别:
Chlamydia type III effectors affecting the host actin-based cytoskeleton
III 型衣原体效应子影响宿主肌动蛋白细胞骨架
- 批准号:
10632935 - 财政年份:2023
- 资助金额:
$ 4.45万 - 项目类别:
Rhinovirus, airway smooth muscle, and mechanisms of irreversible airflow obstruction
鼻病毒、气道平滑肌和不可逆气流阻塞机制
- 批准号:
10735460 - 财政年份:2023
- 资助金额:
$ 4.45万 - 项目类别: