Pericyte reprogramming in fibrosis
纤维化中的周细胞重编程
基本信息
- 批准号:10578526
- 负责人:
- 金额:$ 48.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsAcuteAdoptedAdoptionAffectAnimal ModelAreaAutomobile DrivingBiochemicalBiocompatible MaterialsBiological AssayBiologyBiomedical EngineeringBlood VesselsBlood capillariesCell Adhesion MoleculesCellsChemicalsChronicClinicalDepositionDevelopmentDiagnosisDiseaseDropoutEndotheliumEpithelial CellsEventExposure toExtracellular MatrixExtracellular Matrix ProteinsFibrosisFunctional disorderGrowthGrowth FactorHealthHeartHomeostasisHumanIn SituIndividualInflammationInflammatoryInfluentialsIntegrinsInterstitial Lung DiseasesInterventionInvestigationKidneyKnowledgeLesionLiverLungMCAM geneMaintenanceMechanicsMediatingMediatorMetabolicMethodsMicrovascular DysfunctionMitochondriaMolecularMolecular BiologyMonitorMyofibroblastOrganPathologicPathway interactionsPatientsPericytesPermeabilityPhenotypePolymersPopulationProcessProfibrotic signalPublishingPulmonary FibrosisRNA markerRegulationRoleSamplingSeverity of illnessSignal TransductionSkinSmooth MuscleSourceStaging SystemStructureTechnologyTherapeuticTherapeutic InterventionTimeTissuesTransforming Growth Factor betaTransforming Growth FactorsTranslatingVascular remodelingWorkcell typeclinically relevantdesigndisease diagnosisexperiencein vitro Modelinterstitialmechanical signalmouse modelnecrotic tissuepreventprogramsprotein biomarkersresponsestemstem cell biomarkersstem cellsstem-like celltherapeutically effectivetranscriptome sequencingvascular contributionsvascular injury
项目摘要
Prior to clinical evidence of fibrosis, microvascular injury occurs, presenting as an altered functional state of the
endothelium, increased permeability, enhanced vasoreactivity, increased expression of adhesion molecules,
excessive inflammation, and altered vascular wall growth. Microvascular rarefaction, or capillary dropout, is
coincident with chronic fibrosis, and considered an accelerator of the disease. However little is known about the
microvascular contribution to fibrotic diseases in which microvasculature are key to tissue health and
homeostasis. Given the central role of the vasculature in barrier function, inflammatory regulation and interstitial
tissue necrosis, it is likely that the microvasculature, specifically, mural perivascular cells (pericytes), are key
contributors to fibrotic development and progression. Recent evidence suggests that microvascular dysfunction
may be more directly influential to tissue remodeling than epithelial cells. Limited availability of human pericytes
from a readily available human source has led to an incomplete understanding of the mechanisms underlying
pericyte to myofibroblast transition that facilitate both microvascular and interstitial matrix remodeling. Our work,
supported by that of others in this area, has led us to the hypothesis that pericytes cease homeostatic
maintenance of the microvasculature by transition into a myofibroblast through the process of
dedifferentiation and re-differentiation known as cellular reprogramming. As myofibroblasts, cells of
pericyte lineage contribute to interstitial tissue fibrosis. Through three distinct aims we will show that, in
response to growth factor, pericytes deposit extracellular matrix proteins to alternatively support vascular stability
and fibrosis as they undergo phenotypic transition from microvascular pericytes to interstitial myofibroblasts. We
also determine points in pericyte transition that may be key for therapeutic intervention. We utilize traditional
molecular biology methods and biomaterials technology to determine the profibrotic mediators promote
functional and phenotypic shifts in pericytes. Using 2- and 3-D bioengineered mechanically and biochemically
tunable polymer based extracellular matrices, we decouple the role of biochemical and mechanical signals in
regulation of PC to myofibroblast transition through the process of reprogramming. Results acquired through use
of human cells in bioengineered structures will be validated with animal models of pulmonary fibrosis.
在纤维化的临床证据之前,发生微血管损伤,表现为微血管的功能状态改变。
内皮,增加的渗透性,增强的血管反应性,增加的粘附分子表达,
过度炎症和改变的血管壁生长。微血管稀疏或毛细血管脱落,
与慢性纤维化同时发生,并被认为是疾病的加速剂。然而,人们对它知之甚少。
微血管对纤维化疾病的贡献,其中微血管是组织健康的关键,
体内平衡鉴于血管系统在屏障功能、炎症调节和间质中的核心作用
组织坏死,很可能是微血管,特别是壁周细胞(周细胞),是关键
纤维化发展和进展的贡献者。最近的证据表明微血管功能障碍
可能比上皮细胞更直接地影响组织重塑。人周细胞的可用性有限
从一个现成的人力资源,导致了不完整的理解的机制,
周细胞向肌成纤维细胞的转变促进微血管和间质基质重塑。我们的工作,
在这一领域的其他人的支持下,使我们假设周细胞停止稳态
通过以下过程转变为肌成纤维细胞来维持微血管系统:
去分化和再分化称为细胞重编程。作为肌成纤维细胞,
周细胞谱系有助于间质组织纤维化。通过三个不同的目标,我们将表明,在
周细胞响应生长因子,存款细胞外基质蛋白,以支持血管稳定性
和纤维化,因为它们经历从微血管周细胞到间质肌成纤维细胞的表型转变。我们
还可以确定周细胞转变的点,这可能是治疗干预的关键。我们利用传统
分子生物学方法和生物材料技术,以确定促纤维化介质促进
周细胞的功能和表型转变。使用2-D和3-D生物工程机械和生化
可调聚合物为基础的细胞外基质,我们解耦的作用,生化和机械信号,
通过重编程过程调节PC向肌成纤维细胞的转变。通过使用获得的结果
将用肺纤维化的动物模型来验证生物工程结构中的人类细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anjelica Gonzalez其他文献
Anjelica Gonzalez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 48.73万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 48.73万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 48.73万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 48.73万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 48.73万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 48.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 48.73万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 48.73万 - 项目类别: