Integration of Clinical and Omic Data for Improved Prediction of Patient Outcome

整合临床和组学数据以改进对患者结果的预测

基本信息

  • 批准号:
    9469716
  • 负责人:
  • 金额:
    $ 5.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-05 至 2021-02-04
  • 项目状态:
    已结题

项目摘要

Integration of Clinical and Omic Data for Improved Prediction of Patient Outcome PI: Matthew Ruffalo – Sponsors: Ziv Bar-Joseph, Steffi Oesterreich A Project Summary This project comprises a data integration and machine learning methodology to improve performance in predicting patient outcome – specifically, response to cancer treatments. Multiple disparate data types will be combined for this task, including omic data (somatic mutations, gene expression, methylation), interaction networks, drug target information, and previously-unavailable clinical data, to produce better predictions of response to specific cancer treatments. The proposed methods will use relationships between genes and proteins (often represented as protein in- teraction networks) to construct composite features from omic data, and use these features as inputs to machine learning algorithms, to improve prediction performance of classification methods when applied to clinically rel- evant prediction tasks. Additionally, this project will use clinical data at a level that is not typically available for breast cancer samples, obtained via the Center for Big Data for Better Health (BD4BH) collaboration between Carnegie Mellon University and the University of Pittsburgh. This data includes time-series clinical data spanning five years of breast cancer treatment, such as medication administration, laboratory results, pathology reports, symptoms, and other types of data. This clinical data will be integrated into composite features in order to fur- ther improve prediction performance. This feature construction methodology will also allow the investigation of which cellular processes and pathways are most strongly associated with clinical outcomes, such as response to specific treatments and patient survival. While this approach shows promise in improving classification/prediction performance in clinically relevant tasks such as survival and response to treatment, models learned from these integrated features may still overfit the classification task and may not generalize to other cancers or drugs with similar mechanisms of action. As such, this method will integrate cell line expression data from the LINCS project into the predictive features. The LINCS program has profiled gene expression changes in cell lines under two broad categories: introduction of small molecules, and gene knockouts. Both sets of data will be used to constrain the sets of genes that are used as features for prediction of response to treatment of certain drugs. A central hypothesis of this proposal is that many cellular processes and cancer types respond in similar ways to such perturbations, allowing the use of a multi-task learning method to identify the commonalities in cellular response to these drugs across cell lines. Such methods will also allow for identification of cell-type-specific and cancer-specific responses to such perturbations, identifying those networks and processes that specifically relate to response to treatment in specific cancers. Results will be validated via new in vitro cell line experiments, demonstrating that the constructed features are informative in clinical settings. 1
整合临床和Omic数据以改善患者结局的预测 PI:Matthew Ruffalo -赞助商:Ziv Bar-Joseph,Stef FiOesterreich 项目摘要 该项目包括数据集成和机器学习方法,以提高预测性能 患者结局-特别是对癌症治疗的反应。将组合多种不同的数据类型, 这项任务,包括组学数据(体细胞突变,基因表达,甲基化),相互作用网络,药物靶点 信息和以前无法获得的临床数据,以更好地预测对特定癌症的反应 治疗。 所提出的方法将使用基因和蛋白质之间的关系(通常表示为蛋白质, 交互网络)从组学数据构建复合特征,并将这些特征用作机器的输入。 学习算法,以提高分类方法的预测性能,当应用于临床相关 预测任务。此外,本项目将使用通常无法获得的临床数据, 乳腺癌样本,通过大数据促进健康中心(BD 4 BH)与 卡内基梅隆大学和匹兹堡大学。该数据包括时间序列临床数据, 五年的乳腺癌治疗,如药物管理,实验室结果,病理报告, 症状和其他类型的数据。该临床数据将被整合到复合特征中,以便进一步- 从而提高预测性能。这种特征构造方法还将允许调查 哪些细胞过程和途径与临床结果最密切相关,例如对 具体治疗和患者生存。 虽然这种方法在改善临床相关疾病的分类/预测性能方面显示出希望, 例如生存和对治疗的反应等任务,从这些综合特征中学习的模型可能仍然过拟合。 分类任务,可能无法推广到其他癌症或具有类似作用机制的药物。作为 因此,该方法将来自LINCS项目的细胞系表达数据整合到预测特征中。的 LINCS计划将细胞系中的基因表达变化分为两大类: 小分子和基因敲除。这两组数据将用于约束所使用的基因组 作为预测对某些药物治疗的反应的特征。这一提议的一个核心假设是, 许多细胞过程和癌症类型以类似的方式对这种扰动作出反应,允许使用 多任务学习方法,以确定跨细胞系对这些药物的细胞反应的共性。等 这些方法还将允许识别对这种扰动的细胞类型特异性和癌症特异性反应, 识别那些与特定癌症治疗反应特别相关的网络和过程。 结果将通过新的体外细胞系实验进行验证,证明构建的特征是有效的。 在临床环境中提供信息。 1

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A web server for comparative analysis of single-cell RNA-seq data.
  • DOI:
    10.1038/s41467-018-07165-2
  • 发表时间:
    2018-11-13
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Alavi A;Ruffalo M;Parvangada A;Huang Z;Bar-Joseph Z
  • 通讯作者:
    Bar-Joseph Z
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Ruffalo其他文献

Matthew Ruffalo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Delays in Acquisition of Oral Antineoplastic Agents
口服抗肿瘤药物的获取延迟
  • 批准号:
    9975367
  • 财政年份:
    2020
  • 资助金额:
    $ 5.9万
  • 项目类别:
Eliminate the difficulty of venous puncture in patients receiving antineoplastic agents - Development of a new strategy for the prevention of induration-
消除接受抗肿瘤药物的患者静脉穿刺的困难 - 制定预防硬结的新策略 -
  • 批准号:
    16K11932
  • 财政年份:
    2016
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of the antineoplastic agents inhibiting DNA replication and their applications to cancer patient treatmen
抗肿瘤药物抑制DNA复制的分子机制及其在癌症患者治疗中的应用
  • 批准号:
    19591274
  • 财政年份:
    2007
  • 资助金额:
    $ 5.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PNET EXPERIMENTAL THERAPEUTICS--ANTINEOPLASTIC AGENTS AND TREATMENT DELIVERY
PNET 实验治疗——抗肿瘤药物和治疗实施
  • 批准号:
    6346309
  • 财政年份:
    2000
  • 资助金额:
    $ 5.9万
  • 项目类别:
TRAINING IN PHARMACOLOGY OF ANTINEOPLASTIC AGENTS
抗肿瘤药物药理学培训
  • 批准号:
    2720213
  • 财政年份:
    1999
  • 资助金额:
    $ 5.9万
  • 项目类别:
TRAINING IN PHARMACOLOGY OF ANTINEOPLASTIC AGENTS
抗肿瘤药物药理学培训
  • 批准号:
    6513197
  • 财政年份:
    1999
  • 资助金额:
    $ 5.9万
  • 项目类别:
Training in Pharmacology of Antineoplastic Agents
抗肿瘤药物药理学培训
  • 批准号:
    7101017
  • 财政年份:
    1999
  • 资助金额:
    $ 5.9万
  • 项目类别:
Training in Pharmacology of Antineoplastic Agents
抗肿瘤药物药理学培训
  • 批准号:
    6894842
  • 财政年份:
    1999
  • 资助金额:
    $ 5.9万
  • 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
  • 批准号:
    2885074
  • 财政年份:
    1999
  • 资助金额:
    $ 5.9万
  • 项目类别:
TYROSINE KINASE INHIBITORS AS ANTINEOPLASTIC AGENTS
酪氨酸激酶抑制剂作为抗肿瘤剂
  • 批准号:
    6174221
  • 财政年份:
    1999
  • 资助金额:
    $ 5.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了