Integrated Model of Palliative and Primary Care in Seriously Ill Older Adults
重病老年人的姑息治疗和初级保健综合模式
基本信息
- 批准号:9565691
- 负责人:
- 金额:$ 38.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdoptionAdvance Care PlanningArea Under CurveAwarenessBostonCaringCessation of lifeChronicChronic DiseaseClinicClinic VisitsClinical TrialsComplexComprehensive Health CareDataData AnalyticsDiagnosisDiseaseElderlyElectronic Health RecordEmergency Department patientEmergency SituationEnrollmentEventFaceGeriatricsHome environmentHospitalizationHospitalsInterventionLength of StayMachine LearningMalignant NeoplasmsMeasurableMeasuresMedicalMethodsModelingOlder PopulationOutcomePalliative CarePatient CarePatient Outcomes AssessmentsPatient riskPatient-Focused OutcomesPatientsPerformancePharmaceutical PreparationsPopulationPopulation HeterogeneityPredictive ValuePrimary Health CareProceduresQuality of lifeRandomized Controlled TrialsRecordsReportingResearch DesignResourcesRiskRoleSF-12SamplingSeriesSpecialistStatistical ModelsSymptomsTechniquesTestingTextThinnessTimeValidationVisitWorkbaseclinical infrastructurecostdesignend of lifeend of life careevidence basefallshealth care service utilizationhigh riskhospice environmentimprovedimproved outcomeinterestintervention effectmortalitymultiple chronic conditionsnovelolder patientoncologyoutcome forecastpalliativepatient populationpatient subsetspredictive modelingprimary care settingprimary outcomeprognosticprogramsrandomized trialtrial comparing
项目摘要
Project Summary
Background Palliative care is known to improve patient outcomes and reduce health care utiliza-
tion in patients with cancer. But we know little on how to deliver palliative care to the large and
growing population of older patients with multiple chronic conditions. Palliative care clinicians are a
scarce resource, so care must be targeted to the subset of patients who would benefit most: those
at highest risk of near-term death. This is a major challenge outside of specific diseases with
known trajectories. Clinicians struggle with prognosis, and current statistical models perform poorly.
Aims We will use novel predictive modeling methods (`machine learning') to identify complex old-
er patients at high risk of one-year mortality, drawing on our team's prior work in data analytics and
machine learning. We will apply these methods to a diverse population of older patients with multi-
ple chronic conditions, in a large academic primary care network. Building on our team's track rec-
ord of successful clinical trials, we will conduct a randomized controlled trial of palliative care inte-
grated with primary care, targeting older patients at the highest predicted risk of death. We will as-
sess impact on a range of measurable patient-reported outcomes and health care utilization.
Study design We will develop a model to predict one-year mortality in primary care patients over
65, using a rich set of variables from electronic health records. Our preliminary data indicate that
machine learning models are highly accurate for predicting mortality out-of-sample, i.e., in patients
the model has never seen. We will identify patients at the highest risk of death—who would benefit
most from scarce palliative care resources—and approach them to participate in a randomized trial,
comparing usual primary care to primary care integrated with palliative care. The intervention, a
series of home-based visits by palliative care clinicians, will build a longitudinal relationship with the
patient and primary care team. This strategy is designed specifically to meet the needs of older pa-
tients, as well as busy primary care clinicians. We will power the study to detect changes in two
primary outcomes: quality of life and care intensity, measured by hospital and emergency visits.
Other outcomes include symptom burden, advanced care planning, hospice use, and mortality.
Implications This project will generate the first evidence on a new model of palliative care for
older adults with multiple chronic illnesses, delivered `upstream' in the disease trajectory. We will
build the technical and clinical infrastructure needed to target palliative care interventions for older
adults outside of specific disease-based programs. A successful trial would facilitate broader adop-
tion of similar interventions for older adults, and fundamentally transform the scale and scope of
palliative care efforts in this population.
项目摘要
背景姑息治疗是众所周知的,以改善病人的结果,减少卫生保健利用率。
对癌症患者的影响。但我们对如何为广大民众提供姑息治疗知之甚少,
患有多种慢性病的老年患者人数不断增加。姑息治疗临床医生是一个
稀缺的资源,所以护理必须针对最受益的患者子集:
近期死亡的风险最高这是特定疾病以外的一个重大挑战,
已知的轨迹。临床医生与预后斗争,目前的统计模型表现不佳。
我们将使用新的预测建模方法(“机器学习”)来识别复杂的旧的,
一年死亡率高风险的患者,利用我们团队先前在数据分析方面的工作,
机器学习我们将把这些方法应用于不同人群的老年患者,
在一个大型的学术初级保健网络中。基于我们队的记录-
为了成功的临床试验,我们将进行一项姑息治疗的随机对照试验,
与初级保健相结合,针对死亡风险最高的老年患者。我们会-
sess对一系列可测量的患者报告结果和医疗保健利用的影响。
研究设计我们将开发一个模型来预测初级保健患者的一年死亡率,
65,使用来自电子健康记录的丰富变量集。我们的初步数据显示,
机器学习模型对于预测样本外死亡率是高度准确的,即,患者
模特从未见过。我们将确定死亡风险最高的患者-谁将受益
大多数来自稀缺的姑息治疗资源-并接触他们参加随机试验,
将普通初级保健与初级保健与姑息治疗相结合进行比较。干预,a
姑息治疗临床医生的一系列家庭访问,将建立一个纵向关系,
患者和初级护理团队。这一战略是专门为满足老年人的需要而设计的。
以及忙碌的初级保健临床医生。我们将为这项研究提供动力,
主要结果:生活质量和护理强度,通过医院和急诊来衡量。
其他结果包括症状负担,先进的护理计划,临终关怀的使用和死亡率。
该项目将产生关于姑息治疗新模式的第一个证据,
患有多种慢性病的老年人,在疾病轨迹的“上游”传播。我们将
建立针对老年人姑息治疗干预所需的技术和临床基础设施
成人以外的具体疾病为基础的方案。一个成功的试验将促进更广泛的adop-
为老年人提供类似的干预措施,并从根本上改变老年人的规模和范围。
在这一人群中进行姑息治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ziad Obermeyer其他文献
Ziad Obermeyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ziad Obermeyer', 18)}}的其他基金
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
8550845 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
9136683 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
8918327 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
Unexpected death after medical encounters: Measurement, reporting, and analysis
医疗事故后的意外死亡:测量、报告和分析
- 批准号:
8416137 - 财政年份:2012
- 资助金额:
$ 38.26万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 38.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 38.26万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 38.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.26万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 38.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.26万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 38.26万 - 项目类别:
Standard Grant














{{item.name}}会员




