Computer aided diagnosis of cancer metastases in the brain
计算机辅助诊断脑部癌症转移
基本信息
- 批准号:9216187
- 负责人:
- 金额:$ 46.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-06 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAngiogenesis InhibitionAppearanceBlindedBlood - brain barrier anatomyBlood VesselsBrainBrain NeoplasmsBrain scanBreastCancer EtiologyCancer PatientCharacteristicsClinicClinicalColonColorCommunicationComplementComputational TechniqueComputer softwareComputer-Assisted DiagnosisComputersCranial IrradiationDataDetectionDevelopmentDiagnosisDiagnosticDiseaseDisease remissionDisseminated Malignant NeoplasmDura MaterEarly DiagnosisEdemaEventFunctional Magnetic Resonance ImagingGoalsHumanImageImaging TechniquesImmunotherapyInterventionLabelLeptomeningesLesionLifeLongevityMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of ovaryMedicineMetastatic malignant neoplasm to brainMethodsMindModalityMorbidity - disease rateNeoplasm MetastasisNeuraxisPancreasPatient-Focused OutcomesPatientsPerformancePeripheralPersonal SatisfactionPhysiciansPlayProcessQuality of lifeRadiationRadiation therapyRadiology SpecialtyRadiosurgeryReadingRenal Cell CarcinomaRenal carcinomaResearchResolutionScanningShapesSignal TransductionSkinSpeedStagingStructureTechniquesTestingTimeWeightaccurate diagnosisbasebrain parenchymacancer cellcancer therapychemotherapyclinical Diagnosisdashboarddiagnosis designdiagnostic accuracydigital imagingimaging modalityimprovedkillingsmalignant breast neoplasmmelanomanoveloutcome forecastparallel computerradiologisttooltumoruser-friendly
项目摘要
The overarching goal of this project is to improve the accuracy in diagnosing cancer metastases in the brain
through the development of a novel computer-aided diagnosis (CAD) technique. In today’s cancer treatment, it
is often not the primary cancer but the metastasized cancer that causes fatality. Many cancer, including lung,
kidney, ovarian, and breast cancer, and melanoma, have a tendency metastasizing to the brain and the
number of brain metastases is as high as 170,000 a year in the US alone. Therefore, accurate diagnosis of
brain metastases is of utmost importance in saving lives and improving patient’s well-being. Magnetic
resonance imaging (MRI) is the most widely used modality to scan brain for potential metastases but
diagnosing metastases is a very challenging task that has a considerable rate of false-negatives. The first
difficulty in diagnosing metastases is that, at early stage, metastases are asymptomatic. The second difficulty
is that metastases manifest as weak signal intensity changes on MRI and their appearance is often highly
similar to normal brain structures, such as small blood vessels, meaning that one must visualize in his/her mind
whether an observed object is a metastasis or a blood vessel. Missing a metastasis has a severe consequence
as the patient will not be called for further treatment. The benefit of accurate diagnosis of metastases, on the
other hand, can have a significant benefit to the patient as treatment like stereotactic radiosurgery (SRS) can
completely eliminate the metastasized tumor in many cases and extend patient’s life span by three to four
years in most cases.
CAD can play a key role in improving the accuracy in diagnosing brain metastases by identifying abnormal
signal intensity changes and mark them for radiologists to examine. In this process, CAD will function as an aid
tool to complement human’s expertise in interpreting brain MRI. However, despite the importance of finding
and treating brain metastases, there currently is lacking a CAD approach to this problem. Many existing
computational techniques on brain MRI were tailored to MRI data acquired in a research setting that often
involves many other MRI techniques such as DWI, DTI, and functional MRI. But in clinics only anatomic MRI
like T1- and T2-weighted MRI are used to scan a patient, therefore, a CAD approach must be tailored to the
clinical setting to assist radiologists in reading the brain MRI. In this project we propose a CAD design that is
based on novel computational techniques and integrated with routine clinical MRI acquisition. The CAD design
features minimum user intervention and parameter selection, high robustness, and user-friendliness. We will
also take advantage of the availability of graphics processing unit (GPU) in implementation to speed up the
computations. We expect the proposed CAD approach will improve the accuracy of diagnosing brain
metastases, and in turn, save lives and benefit patients’ well-being.
该项目的总体目标是提高诊断脑部癌症转移的准确性
通过开发一种新颖的计算机辅助诊断(CAD)技术。在当今的癌症治疗中,
通常不是原发性癌症,而是导致死亡的转移性癌症。许多癌症,包括肺癌,
肾癌、卵巢癌、乳腺癌和黑色素瘤有转移到大脑和全身的倾向
仅在美国,每年脑转移瘤的数量就高达 17 万例。因此,准确诊断
脑转移对于挽救生命和改善患者的健康至关重要。磁的
磁共振成像 (MRI) 是扫描大脑是否存在潜在转移的最广泛使用的方法,但
诊断转移瘤是一项非常具有挑战性的任务,具有相当大的假阴性率。第一个
诊断转移的困难在于,在早期阶段,转移是无症状的。第二个难点
转移瘤在 MRI 上表现为微弱的信号强度变化,并且其外观通常高度
类似于正常的大脑结构,例如小血管,这意味着人们必须在他/她的头脑中进行想象
观察对象是转移瘤还是血管。错过转移会产生严重后果
因为患者不会被要求接受进一步治疗。准确诊断转移的好处
另一方面,可以给患者带来显着的好处,因为立体定向放射外科 (SRS) 等治疗可以
在许多情况下完全消除转移的肿瘤,并延长患者三至四年的寿命
大多数情况下是几年。
CAD 可通过识别异常情况在提高脑转移诊断准确性方面发挥关键作用
信号强度变化并进行标记以供放射科医生检查。在此过程中,CAD将起到辅助作用
补充人类在解释大脑 MRI 方面的专业知识的工具。然而,尽管发现很重要
以及治疗脑转移,目前缺乏解决这个问题的 CAD 方法。许多现有的
脑 MRI 的计算技术是根据在研究环境中获取的 MRI 数据量身定制的,这些数据通常
涉及许多其他 MRI 技术,如 DWI、DTI 和功能 MRI。但在临床上只有解剖 MRI
就像 T1 和 T2 加权 MRI 用于扫描患者一样,因此 CAD 方法必须适合患者
临床环境可协助放射科医生读取脑部 MRI。在这个项目中,我们提出了一个 CAD 设计,即
基于新颖的计算技术并与常规临床 MRI 采集相结合。 CAD设计
具有最少的用户干预和参数选择、高鲁棒性和用户友好性。我们将
还利用实施中图形处理单元(GPU)的可用性来加速
计算。我们预计所提出的 CAD 方法将提高诊断大脑的准确性
转移,进而挽救生命并造福患者的福祉。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoyin Xu其他文献
Xiaoyin Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoyin Xu', 18)}}的其他基金
Computer aided diagnosis of cancer metastases in the brain
计算机辅助诊断脑部癌症转移
- 批准号:
9759982 - 财政年份:2016
- 资助金额:
$ 46.18万 - 项目类别:
A novel informatics approach to understanding complex muscle fiber phenotypes
一种理解复杂肌纤维表型的新信息学方法
- 批准号:
8929291 - 财政年份:2014
- 资助金额:
$ 46.18万 - 项目类别:
A novel informatics approach to understanding complex muscle fiber phenotypes
一种理解复杂肌纤维表型的新信息学方法
- 批准号:
9341379 - 财政年份:2014
- 资助金额:
$ 46.18万 - 项目类别:
A novel informatics approach to understanding complex muscle fiber phenotypes
一种理解复杂肌纤维表型的新信息学方法
- 批准号:
8760564 - 财政年份:2014
- 资助金额:
$ 46.18万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 46.18万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 46.18万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 46.18万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 46.18万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 46.18万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 46.18万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 46.18万 - 项目类别:
Research Grant














{{item.name}}会员




