A novel informatics approach to understanding complex muscle fiber phenotypes

一种理解复杂肌纤维表型的新信息学方法

基本信息

  • 批准号:
    8929291
  • 负责人:
  • 金额:
    $ 36.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-28 至 2018-09-27
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We propose to develop a bioinformatics toolbox to process and quantify complex muscle cell images for automated phenotype analysis. The toolbox is aimed to provide both clinical practitioners and laboratory investigators with the much-needed capability to automatically detect and identify pathological features that manifest themselves in many muscle-related diseases such as cardiomyopathy, muscular hypertrophy, amyotrophic lateral sclerosis (ALS) (often known as Lou Gehrig's disease), muscular dystrophies such as Duchenne muscular dystrophy and Becker muscular dystrophy, and inflammatory muscle damage. Many of these conditions have no effective treatment and high fatality rates. For example, ALS is progressive neurodegenerative disease that is caused by the death of motor neurons and results in increasing muscle weakness and atrophy, has a survival rate less than twenty percent over a five-year period, and the disease affects more 5,000 people in the U.S. each year. In our search for treatment for the muscle-related diseases, lack of computational method to objectively and quantitatively analyze muscle cell images has become a rate limit factor. As clinicians and researchers are increasingly looking into the cellular and molecular mechanisms of the diseases, detailed pathological analysis is necessary for people to understand the biological processes. Yet, the only available approach is manual analysis which is confined to small datasets and qualitatively interpretation of the images. Important pathological features may be missed by manual analysis or obscured due to the large variation in human observation. Also results of manual analysis are not immediately ready for data management and analysis because of the long time it takes. Hence we identified the need for a dedicated toolbox to facilitate muscle-related research, which was confirmed by our user community. Featuring novel imaging processing algorithms, the toolbox will quantitatively analyze muscle cells, integrate results from multiple channels, and export quantitative results, with little user intervention. The toolbox will advance clinical and laboratory research by providing detailed analysis of histopathological features such as the intact of cellular membrane, the location of nuclei, and geometric measurements of the cells. It will facilitate discovery by highlighting subtl yet important information in histopathology, reducing human errors, and enabling research to analyze a larger number of images than they currently are able to. The toolbox will also improve workflow in clinics and laboratories by providing users with high sensitivity, objectivity, and efficiency in interpreting muscle cell images. The quantifying capability of the toolbox will allow users to compare therapeutic treatments with a high confidence level. Overall the project will benefit the large biomedical community of treating and researching muscle-related diseases. In turn, the project will benefit the patients of muscular diseases by facilitating diagnosis of muscular disorders and discovery of new therapies.
描述(由申请人提供):我们建议开发生物信息学工具箱,以处理和量化复杂的肌肉细胞图像以进行自动表型分析。该工具箱的目的是为临床实践者和实验室研究人员提供急需的能力,能够自动检测和确定在许多与肌肉相关的疾病中表现出来的病理特征和贝克尔肌肉营养不良以及炎症性肌肉损伤。其中许多情况没有有效的治疗和高死亡率。例如,ALS是由运动神经元死亡引起的进行性神经退行性疾病,导致肌肉无力和萎缩增加,在五年内的存活率小于20%,并且该疾病每年影响更多的美国5,000人。在我们寻找与肌肉相关疾病的治疗时,缺乏客观和定量分析肌肉细胞图像的计算方法已成为率极限因子。随着临床医生和研究人员越来越多地研究疾病的细胞和分子机制,人们必须详细的病理分析才能理解生物学过程。但是,唯一可用的方法是手动分析,它仅限于小型数据集并对图像的定性解释。由于人类观察的差异很大,可以通过手动分析遗漏重要的病理特征,也可能被遮盖。同样,由于长时间的时间,手动分析的结果还没有立即准备进行数据管理和分析。因此,我们确定了需要专门的工具箱来促进与肌肉相关的研究,这是我们用户社区证实的。 该工具箱具有新型成像处理算法,将定量分析肌肉细胞,整合了多个通道的结果,并导出定量结果,而用户干预很少。该工具箱将通过提供组织病理学特征的详细分析,例如细胞膜的完整,核的位置以及细胞的几何测量方法来推进临床和实验室研究。它将通过突出组织病理学中的小巧但重要的信息,减少人类错误,并使研究能够分析比目前能力的更多图像,从而促进发现的促进。该工具箱还将通过为用户提供高灵敏度,客观性和解释肌肉细胞图像的效率来改善诊所和实验室的工作流程。工具箱的量化功能将允许 用户以较高的信心水平比较治疗治疗。 总体而言,该项目将使大型生物医学社区受益于治疗和研究与肌肉有关的疾病。反过来,该项目将通过促进肌肉疾病的诊断和发现新疗法来使肌肉疾病患者受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoyin Xu其他文献

Xiaoyin Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoyin Xu', 18)}}的其他基金

Computer aided diagnosis of cancer metastases in the brain
计算机辅助诊断脑部癌症转移
  • 批准号:
    9759982
  • 财政年份:
    2016
  • 资助金额:
    $ 36.04万
  • 项目类别:
Computer aided diagnosis of cancer metastases in the brain
计算机辅助诊断脑部癌症转移
  • 批准号:
    9216187
  • 财政年份:
    2016
  • 资助金额:
    $ 36.04万
  • 项目类别:
A novel informatics approach to understanding complex muscle fiber phenotypes
一种理解复杂肌纤维表型的新信息学方法
  • 批准号:
    9341379
  • 财政年份:
    2014
  • 资助金额:
    $ 36.04万
  • 项目类别:
A novel informatics approach to understanding complex muscle fiber phenotypes
一种理解复杂肌纤维表型的新信息学方法
  • 批准号:
    8760564
  • 财政年份:
    2014
  • 资助金额:
    $ 36.04万
  • 项目类别:

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
  • 批准号:
    10676428
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
Exploiting translation elongation for improved biologics manufacturing
利用平移伸长来改进生物制品的制造
  • 批准号:
    10760927
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
  • 批准号:
    10734357
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
An Integrated Biomarker Approach to Personalized, Adaptive Deep Brain Stimulation in Parkinson Disease
帕金森病个性化、适应性深部脑刺激的综合生物标志物方法
  • 批准号:
    10571952
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了